Surreptitiously Converting Dead Matter into Oil and Coal

By Pennisi, Elizabeth | Science News, February 20, 1993 | Go to article overview

Surreptitiously Converting Dead Matter into Oil and Coal


Pennisi, Elizabeth, Science News


Just as everyone knows that oil and water don't mix, scientists know that organic reactions don't work well in aqueous solutions.

But to a small group of scientists studying how oil and coal form from carbon-rich decayed plants and algae, aqueous organic chemistry- reactions of carbon-based compounds in hot water - represents a better way of thinking about how the Earth created those vast underground energy reserves.

"We're promoting the idea that water is important in natural organic reactions," says Michael D. Lewan, a geochemist with the U.S. Geological Survey (USGS) in Denver.

In addition, sustained investigation into how hot water affects organic materials may lead to more efficient and environmentally friendly processes. Someday, water may aid in making -- and recycling or cleaning up -- plastics and other petroleum-based products.

Once again, this commonplace substance turns out to have some uncommon attributes. "We just take water for granted:' says Theodore P. Goldstein, an organic chemist at Mobile Research & Development Corp. in Princeton, N.J. "We don't think its properties can change."

Little did he and others realize how mutable water can be.

Until now, scientists thought that coal forms when dying plants in soggy marshes get buried, creating a peat that simmers in this soupy environment. If no oxygen is present, chemical events slowly change peat, first into lignite and then, millions of years later, into bituminous coal. If temperatures climb high enough, anthracite coal forms.

Oil formation was viewed similarly, Dead marine microorganisms sink to the seafloor, then become buried by silt washing out of a river. If enough silt piles up, it creates a geologic Dutch oven, in which high temperature and pressure cause the organic debris to condense. A source rock -- oil shale -- forms. In its pores, chemical processes continue until oil oozes forth. The key requirement is getting this "oven" hot enough for a long enough time - or so everyone thought.

These explanations did not satisfy Andrew Kaldor, a researcher at Exxon Research and Engineering Co. in Annandale, N.J. He realized that ideas about oil and coal formation had evolved many years ago and had not really been updated to include new chemical and biological knowledge.

So Kaldor and Exxon organic chemist Michael Siskin decided to reexamine these ideas by first determining the chemical composition of organic materials in source-rock shales - an awesome job given the complex and highly variable nature of this starting material and the cascade of molecular transformations that occurs in forming oil and coal.

In both, plant matter decays into a potpourri of molecules that, depending on the conditions at hand, break up and clump in any number of ways. Carbon atoms get rearranged into assorted rings and chains to create a complex, interlocking network. Hydrogen atoms join, leave, and sometimes rejoin this network. as do other elements such as oxygen, nitrogen, or sulfur, eventually forming giant, insoluble macromolecules. "It's everything that winds up in the sediments," notes Goldstein.

Few chemists would even know how to begin teasing out the right combination of hydrocarbons to create oil or coal, but somehow nature manages to break these giant molecules in just the right places.

To understand this process better, the Exxon group collected samples of oil shale from different parts of the world. The samples included a series from oil shale under the North Sea, where rocks in different locations exhibit different degrees of transformation. Siskin then placed the samples into a pressurized reaction vessel and heated them individually to temperatures ranging from 570[degree]C to 750[degree]C. These hotter-thannatural conditions sped up the transformation from a geologic time frame of millions of years to one measured in days and hours.

Over the course of about two years, these and other tests helped the scientists piece together the locations of various atoms and side groups in representative molecular structures and in the intermediate products created in the transformation from molecular glob to oil. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

Surreptitiously Converting Dead Matter into Oil and Coal
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
  • Highlights & Notes
  • Citations
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.