Pushing the Limit: Digital-Communications Experts Are Zeroing in on the Perfect Code

By Klarreich, Erica | Science News, November 5, 2005 | Go to article overview

Pushing the Limit: Digital-Communications Experts Are Zeroing in on the Perfect Code


Klarreich, Erica, Science News


When SMART-1, the European Space Agency's first mission to the moon, launched in September 2003, astronomers hailed it as the testing ground for a revolutionary and efficient solar-electric-propulsion technology. While this technological leap absorbed the attention of scientists and the news media, a second, quieter revolution aboard SMART-1 went almost unheralded. Only a small band of mathematicians and engineers appreciated the quantum leap forward for digital communications. Incorporated into SMART-1's computers was a system for encoding data transmissions that, in a precise mathematical sense, is practically perfect.

Space engineers have long grappled with the problem of how to reliably transmit data, such as pictures and scientific measurements, from space probes back to Earth. How can messages travel hundreds of millions of miles without the data becoming hopelessly garbled by noise? In a less extreme situation, as any cell phone user can attest, noise is also an issue for communication systems on Earth.

Over the past half-century, mathematicians and computer scientists have come up with clever approaches to the noise problem. They've devised codes that intentionally incorporate redundancy into a message, so that even if noise corrupts some portions, the recipient can usually figure it out. Called error-correcting codes, these underlie a host of systems for digital communication and data storage, including cell phones, the Internet, and compact disks. Space missions use this technique to send messages from transmitters that are often no more powerful than a dim light bulb.

Yet coding theorists have been aware that their codes fall far short of what can, in theory, be achieved. In 1948, mathematician Claude Shannon, then at Bell Telephone Laboratories in Murray Hill, N.J., published a landmark paper in which he set a specific goal for coding theorists. Shannon showed that at any given noise level, there is an upper limit on the ratio of the information to the redundancy required for accurate transmission. As with the speed of light in physics, this limit is unattainable, but--in theory at least--highly efficient codes can come arbitrarily close.

The trouble was that no one could figure out how to construct the superefficient codes that Shannon's theory had predicted. By the early 1990s, state-of-the-art codes were typically getting information across at only about half the rate that Shannon's law said was possible.

Then, in the mid-1990s, an earthquake shook the coding-theory landscape. A pair of French engineers--outsiders to the world of coding theory--astonished the insiders with their invention of what they called turbo codes, which come within a hair's breadth of Shannon's limit.

Later in the decade, coding theorists realized that a long-forgotten method called low-density parity-check (LDPC) coding could edge even closer to the limit.

Turbo codes and LDPC codes are now coming into play. In addition to being aboard the SMART-1 mission, turbo-code technology is on its way to Mercury on NASA's Messenger mission, launched last year. In the past couple of years, turbo codes have also found their way into millions of mobile phones, enabling users to send audio and video clips and to surf the Internet.

LDPC codes, meanwhile, have become the new standard for digital-satellite television. Hundreds of research groups are studying potential applications of the two kinds of codes at universities and industry giants including Sony, Motorola, Qualcomm, and Samsung.

"In the lab, we're there" at the Shannon limit, says Robert McEliece, a coding theorist at the California Institute of Technology in Pasadena. "Slowly, the word is getting out, and the technology is being perfected."

The closing of the gap between state-of-the-art codes and the Shannon limit could save space agencies tens of millions of dollars on every mission because they could use lighter data transmitters with smaller batteries and antennas. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Pushing the Limit: Digital-Communications Experts Are Zeroing in on the Perfect Code
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.