Teaching Bayesian Statistics Using Sampling Methods and MINITAB

By Albert, James H. | The American Statistician, August 1993 | Go to article overview

Teaching Bayesian Statistics Using Sampling Methods and MINITAB


Albert, James H., The American Statistician


1. INTRODUCTION

In recent years, the Bayesian approach to statistical inference has received more attention in research in applied and theoretical statistics. It is perceived by many statisticians as a natural paradigm for solving applied problems. However, it appears that the education of undergraduate and graduate students in Bayesian methods has lagged behind the research advances. Many students go through their program in statistics without hearing even a mention of Bayesian ideas. In some courses, such as an introductory mathematical statistics course, Bayesian methods are treated as just an alternative technique for deriving a test or estimator. In these classes, the student gets a very distorted view of the Bayesian paradigm. The student will not get any experience in constructing a prior and understanding how these prior beliefs get updated by data.

One of the hurdles in teaching the Bayesian paradigm is the difficulty in computation. Once the posterior distribution is defined, the student will typically be introduced to a series of examples involving estimation of parameters from standard parametric families. In each example, a conjugate prior distribution is defined so that the posterior distribution can be mathematically derived. He or she does not typically get exposed to the use of nonconjugate priors, since the posterior calculations (for example, mean, standard deviation) need to be computed by numerical methods. On the basis of this experience, the student views Bayes's rule as a mathematical exercise and does not understand that this recipe applies to any likelihood and any prior.

In the last 10 years, a great amount of progress has been made in the area of Bayesian computation. A number of good numerical integration methods have been developed recently for computing the integrals that are common in Bayesian inference. [See Naylor and Smith (1988) and Smith, Skene, Shaw, Naylor, and Dransfield (1985) for recent surveys.] One general class of computation algorithms uses sampling techniques to simulate posterior distributions. One particular simulation method, the Gibbs sampler (Gelfand and Smith 1990), has been shown to be remarkably successful in simulating posterior distributions for a large number of parameters.

Although a number of good algorithms currently exist to perform Bayesian computations, these methods are not widely used. In particular, these computational methods are not taught in an introductory Bayesian course. Two reasons can be suggested for this lack of general use. First, most of these computational methods need to be applied by a user who is familiar with the algorithm and understands when the method has converged or produced an answer of sufficient accuracy. The second and probably most important reason is that there is little Bayesian computer software available. Most of the Bayesian software commercially available is designed for particular inference problems, such as linear models and time series. There is little software available that allows one to implement Bayes's theorem for arbitrary prior and likelihood specifications.

In this article, we explore the use of one particular simulation technique, the Sampling-Importance-Resampling (SIR) algorithm (Gelfand and Smith 1992; Rubin, 1987, 1988), in teaching Bayesian statistics. This algorithm, defined in Section 2, can be viewed as a general approximate method of simulating from a posterior distribution. For teaching purposes, this method has several advantages over alternative numerical integration schemes. First, the SIR algorithm can be performed somewhat automatically for a wide range of Bayesian inference problems. The student does not need to monitor or adjust the parameters of the algorithm to obtain satisfactory answers. Since the method is automatic, the student can focus his or her attention to the construction of the prior and how the posterior summarizes the information contained in the data and the prior. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Teaching Bayesian Statistics Using Sampling Methods and MINITAB
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.