Climate Change and the Forest: Warming Breeds Drought, Drought Breeds Fires, Fires Release Carbon, Carbon Breeds Warming

By Nepstad, Daniel | The American Prospect, September 2007 | Go to article overview

Climate Change and the Forest: Warming Breeds Drought, Drought Breeds Fires, Fires Release Carbon, Carbon Breeds Warming


Nepstad, Daniel, The American Prospect


IN 1984, ON THE OUTSKIRTS OF PAR" agominas, a bustling and violent cattle town in the eastern Amazon, I walked through a pasture, brown and dusty from drought, into a 500-acre island of virgin forest. The moist greenness of the leaf canopy that reached more than 100 feet above my head and the squishy dampness of the humus, dead leaves, and branches on the ground were a world apart from the parched African grasses and gaunt white zebu cows I had just seen. Although I didn't realize it at the time, it is in understanding the differences between these two worlds--the rainforest and the cattle pastures that are replacing them--that we begin to realize how the lives of people around the world are tied to the fate of Amazon forests. The climate of the Amazon and the climate of the planet are both dependent upon the deeply rooting, drought-resistant trees that comprise Amazon forests, just as the survival of these trees depends upon climate. The risk is that the early symptoms of climate change will act synergistically with logging, fire, and drought to replace much of Amazon rainforests with fire-prone scrub vegetation, accelerating global warming in the process.

To penetrate the complex web of relationships between climate and rainforest, we must begin with a lesson in tree physiology. Hug a tree on a warm, sunny day, and your arms surround thousands of tiny, little tubes full of water that is racing silently skyward, like soda up a straw. Everyone has seen these tubes, which biologists call "vessels" and "tracheids." They help form the grain in wood. Seasonal variations in the diameters of these tubes make up the growth rings we see on the cut surfaces of tree trunks. Wood is the plant world's most successful invention for accomplishing two extraordinarily difficult tasks. Its remarkable strength allows trees to position their leaves to capture sunlight far above the ground. And its exquisite plumbing network of vessels and tracheids supplies these leaves with water absorbed from the soil.

For many years it was assumed that Amazon trees are not very good at absorbing water from the soil because of their very shallow root systems. Back in 1984, as I returned to that 500-acre forest island nearly every day of the five-month dry season, the mismatch between the assumption and what I was seeing slowly sank into my graduate-student mind. Some simple calculations led me to predict that the towering, green trees had to be absorbing moisture from at least 25 feet beneath the ground surface, well beyond the two- or three-foot rooting depth assumed by most. Otherwise these trees would have turned brown and gone dormant, just like the African forage grasses planted in the neighboring pasture. Twenty-five feet was the depth of soil needed to store the amount of water that the forest was releasing to the atmosphere through "transpiration"--the evaporation of water from leaves into the air--and that was not being supplied by the meager, dry-season rains that had fallen. I hired some well-diggers from Paragominas, a town south of Belem, to test my calculations and look for deep roots. One hearty digger dug down 68 feet, aided by an industrial fan that pumped fresh air into his damp, dark, grave-sized hole. The last tree roots disappeared 60 feet beneath the ground's surface. By 1992 my research team had dug dozens of deep holes across the Amazon with similar results. The assumption of shallow rooting in Amazon trees was put to rest in 1994 as we published our results in the journal Nature despite stiff resistance from some reviewers of our controversial findings.

Deep roots are far more than a botanical curiosity. For by allowing Amazon forests to remain green and lush during the severe seasonal droughts that affect about half of the Amazon region each year, these cryptic tree organs facilitate the release of enormous amounts of water to the atmosphere through transpiration. Thanks to deep roots, Amazon trees can supply the atmosphere with vapor year round, and this vapor is the most important ingredient of rain clouds in this region. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Climate Change and the Forest: Warming Breeds Drought, Drought Breeds Fires, Fires Release Carbon, Carbon Breeds Warming
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.