Mice, Magnetism, and Reactions on Solids: Nobels Awarded in Genetics, Materials Science, and Surface Chemistry

By Seppa, N.; Castelvecchi, D. et al. | Science News, October 13, 2007 | Go to article overview

Mice, Magnetism, and Reactions on Solids: Nobels Awarded in Genetics, Materials Science, and Surface Chemistry


Seppa, N., Castelvecchi, D., Williams, S., Science News


The 2007 Nobel prizes in the sciences were announced early this week.

Physiology or Medicine

The discovery of techniques to identify the roles of genes has earned three scientists the 2007 Nobel Prize in Physiology or Medicine.

The award is shared by Mario R. Capecchi of the Howard Hughes Medical Institute and the University of Utah in Salt Lake City, Martin J. Evans of Cardiff University in Wales, and Oliver Smithies of the University of North Carolina at Chapel Hill.

Nearly 3 decades ago, Capecchi and Smithies separately investigated the process that cells use to fix damaged genes. Both researchers managed to harness this process, called recombination. By injecting normal DNA into a cell, they were able to modify targeted genes.

But to test the actual roles of individual genes, the scientists needed to make the DNA changes in live organisms, not just in cells in a lab dish.

Across the Atlantic, Evans had discovered embryonic stem cells in mice. By adding cells from one mouse embryo to an embryo from a different kind of mouse, he was able to modify the genes passed along to the second animal's offspring. Moreover, by using embryonic stem cells infected with a virus--and its DNA--Evans showed that it was possible to add genetic material to an embryo. The work suggested a way to alter an animal so that its eggs and sperm pass on those changes.

Scientists seized upon these breakthroughs as a means to determine what individual genes do by replacing genes with inactive versions in mice and then noting the consequences. In 1989, several laboratories published accounts of mice that were genetically engineered to lack particular genes and produced offspring with the same change.

The work had inaugurated a technique that would ultimately elucidate the roles of hundreds of genes.

"The best way to understand the function of a gene is to remove it," says geneticist David W. Melton of the University of Edinburgh. "This technology, for the first time, generated an experimental system in mice that enabled us to study relationships between genetic changes and the symptoms of specific diseases."

Few diseases are attributable to a single faulty gene. In recent years, Capecchi notes, scientists have gained the ability to assess several genes at once. "We want to see ... how these genes interact with each other," he says.

Capecchi was born in Italy in 1937. When his mother was imprisoned in Germany during World War II, he lived on the streets for 4 years before being reunited with her in 1945. They moved to the United States, where his studies put him on the ground floor of the burgeoning science of genetics.

Capecchi's life has now come full circle in a story of rags to research to riches. He and the other two scientists will split the $1.54 million prize. --N. SEPPA

Physics

In less than 10 years, a physical effect discovered in the lab made its way into computer technology, ultimately yielding dramatic improvements in data-storage capacity. The discoverers of that effect, Albert Fert of the Universite Paris-Sud in Orsay, France, and Peter Grunberg of the Research Center Julich in Germany, will share this year's Nobel Prize in Physics.

The phenomenon, which each of the physicists' teams observed independently in 1988, is called giant magnetoresistance. It has enabled engineers to increase the sensitivity of hard disk reading heads and pack more data into less space.

Certain metals, notably iron, are magnetic because their atoms, which act individually like small bar magnets, all tend to line up in the same direction. And when electrons flow through such a metal, constituting an electric current, their spins also tend to line up with the metal's magnetization. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Mice, Magnetism, and Reactions on Solids: Nobels Awarded in Genetics, Materials Science, and Surface Chemistry
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.