Prepping Students for Authentic Science: Student Research Helps Scientists Discover the Function of Poorly Characterized Plant Genes

By Dolan, Erin L.; Lally, David J. et al. | The Science Teacher, October 2008 | Go to article overview

Prepping Students for Authentic Science: Student Research Helps Scientists Discover the Function of Poorly Characterized Plant Genes


Dolan, Erin L., Lally, David J., Brooks, Eric, Tax, Frans E., The Science Teacher


[ILLUSTRATION OMITTED]

You can probably think of a time when your students conducted an experiment with a predictable outcome that yielded an unexpected result. When this happens, discussion often centers on, "What did we do wrong?" instead of "How do these data address our scientific question?" or "What alternative explanations could account for our findings?" (Hart et al. 2000).

Unexpected results can serve as an excellent teaching tool and "authentic science" can be used as a learning context for developing students' understanding of the process and nature of science (AAAS 1990; Bencze and Hodson 1999; Hanauer et al. 2007; Means 1998; NRC 1996). Making discoveries is fun and exciting, and may be the impetus that propels young learners to pursue challenging course-work, further education, and careers in science (Markowitz 2004; Roberts and Wassersug 2008). Yet, scientific research usually happens in research laboratories or at field sites, and requires access to knowledge, supplies, and equipment not typically available in precollege classrooms.

Research internships provide an excellent way for high school students to participate in authentic research (Barab and Hay 2001; Knox, Moynihan, and Markowitz 2003; Markowitz 2004). However, such opportunities are often limited in scope and scale and involve only a handful of students. Yet, three factors are opening doors between classrooms and research labs: publicly available databases that contain massive amounts of biological information; stock centers that house and distribute inexpensive organisms with different genotypes; and the internet, which serves as conduit for dialogue and knowledge sharing.

In this article, we describe a large-scale research collaboration, the Partnership for Research and Education in Plants (PREP; see "On the web" at the end of this article), that has capitalized on these resources in response to interest from students. Through PREP, entire classes of students, with mentorship from teachers and scientists, are currently designing and conducting their own investigations while adding to the body of knowledge about genes and their functions.

Germination of a collaboration

A few years ago, the first author met with several teacher colleagues who noted that their students wanted opportunities to collect "real" data. Students were interested in moving beyond demonstration labs, with their predict able outcomes, and in a different direction than science fairs, where findings may only be shared with other students and their families, rather than the broader scientific community. The group brainstormed what experiments students could do in classrooms, keeping in mind their interests, district regulations, and required course content.

Microbes are easy to maintain and manipulate, but preparation, safe handling, and disposal of growth media can be problematic and cost-prohibitive. Investigations with animals also present a host of concerns, including the regulations, logistics, and cost of care. In contrast, plants are uniquely flexible, scalable, and compelling tools for student investigations. Plants are large enough to be manipulated by young hands, inexpensive enough to grow in the scale required by classrooms, and robust enough for student caretakers (Lally et al. 2007).

Many teachers already use the Wisconsin Fast Plants curriculum to guide students in understanding plant biology, classical genetics, and scientific inquiry. Fast Plants have been bred to have a uniform, short flowering time and grow well in a small indoor space (see "On the web"). Arabidopsis thaliana, a relative of Fast Plants, is well characterized at the molecular level so many tools and resources are available for teaching concepts and skills related to genetics and biotechnology. More than 10,000 scientists around the world who study Arabidopsis continue to generate these resources and make them available at low or no cost. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

Prepping Students for Authentic Science: Student Research Helps Scientists Discover the Function of Poorly Characterized Plant Genes
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
  • Highlights & Notes
  • Citations
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.