Global Positioning System Instruction in Higher Education

By Wikle, Thomas A.; Gering, Lawrence R. et al. | T H E Journal (Technological Horizons In Education), December 1996 | Go to article overview

Global Positioning System Instruction in Higher Education


Wikle, Thomas A., Gering, Lawrence R., Lambert, Dean P., T H E Journal (Technological Horizons In Education)


Although students can gain a conceptual understanding of Earth coordinate systems through instruction involving diagrams and globes, there is no substitute for an outdoor experience m@ teaching field mapping and navigation. Such training is essential for students interested in careers involving data collection in the field, such as forestry, oil exploration, land-use planning or farm management.

Until recently, the principal tools available for instruction involving field mapping and navigation have been the topographic map and magnetic compass. Although useful for coarse navigation or positioning when landmarks are easily seen, a map and compass are not suitable for precision mapping and can be difficult to use when landmarks are not identifiable. Surveying equipment provides better accuracy but less portability and requires specialized training and considerable set-up time. Trends in the need for information, especially spatial information, have also fueled the demand for a fast and reliable method to determine Earth coordinates in the field.

* Purpose of this Article

The recent completion of the global positioning system (GPS) and increased availability and affordability of GPS receivers have introduced exciting tools for instructional programs that emphasize field data collection. Unfortunately, many educators may not be aware of the potential benefits that GPS can provide in improving methods for field data collection.

Our purpose here is to provide educators with a brief overview of GPS technology and includes some illustrations of how we have GPS introduced in classroom exercises.

* GPS, The Global Positioning System

GPS is a satellite-based system developed by the U.S. Department of Defense (DoD) to simplify and improve military and civilian navigation and positioning anywhere on earth.[1] Testing of the first GPS satellite began in the 1970s, with the system becoming fully operational in the early 1990s.

As Figure 1 shows, GPS is composed of three parts. The Space component is made up of 24 satellites circling the Earth at a distance of approximately 10,900 nautical miles.[2] Each satellite travels along one of six orbital planes and makes a complete orbit in slightly less than 12 hours. GPS satellites send a continuous stream of radio signals to Earth containing information about orbit, equipment status and the exact time.

The Control component includes five monitoring stations located throughout the world and a Master Control Station (MCS) at Falcon Air Force Base in Colorado. Information processed at the MCS is sent to monitoring stations, where satellite clock and orbital corrections can be made via ground antennas.

The User component is comprised of a hand-held receiver that processes satellite information to determine a user's position and velocity. Equipped with a GPS receiver, it is possible to navigate or collect positions while stationary or moving and while located on the ground, in the air or over water.

* How GPS Works

The basic principle used by GPS to determine Earth positions is relatively simple. Extremely precise clocks and the principle of triangulation are applied to measuring distances between a user and a combination of three or more satellites based on the time needed for the radio signal from each satellite to reach the hand-held receiver.

Several factors affect the accuracy obtainable with civilian GPS receivers. U.S. military concerns over the risks of GPS being used by hostile forces prompted the DoD to reduce the accuracy of positions that can be obtained by civilian receivers. This intentional error, known as "selective availability" or SA, degrades positions reported by civilian receivers, causing the positions reported to deviate up to 100 meters from the receiver's location. Recently, however, the DoD announced plans to eliminate SA within the next five to ten years. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Global Positioning System Instruction in Higher Education
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.