Computer-Aided Teaching of Probabilistic Modeling for Biological Phenomena

By Goel, Prem K.; Peruggia, Mario et al. | The American Statistician, May 1997 | Go to article overview

Computer-Aided Teaching of Probabilistic Modeling for Biological Phenomena


Goel, Prem K., Peruggia, Mario, An, Baoshe, The American Statistician


1. INTRODUCTION

In this paper we describe the preliminary version of a software system for the computer simulation of prototypical stochastic models for a variety of biological systems. Our primary motivation for developing this software is to provide a flexible teaching tool to be employed in probabilistic modeling courses geared towards undergraduate students in the biological and environmental sciences.

Proper accounting of uncertainty plays a major role in many problems of risk assessment and policy analysis [see, for example, Morgan and Henrion (1990)]. Most colleges and universities require introductory courses in statistics and data analysis as part of their general educational curricula. However, for a large majority of students in science, engineering, and public policy, knowledge of key concepts in applied statistics and probability modeling and understanding of their applications to substantive disciplines must go beyond the basics that are usually taught.

Appropriate mathematical modeling (both deterministic and stochastic) of the key features of the driving mechanisms of many natural, scientific, and engineering phenomena requires a thorough understanding of matrix algebra, ordinary and partial differential equations, as well as probability theory and statistical analysis. Oftentimes, the lack of a deep grasp of these concepts prevents the students from understanding the modeling techniques and the consequences of uncertainty and variability. As educators in the statistical sciences we should still strive to convey effectively fundamental ideas of probabilistic modeling to science and engineering majors, while minimizing the need for underlying mathematical analyses.

In particular, we should stress the importance of the modeling assumptions and foster an understanding of the practical consequences that they bear. In addition, students ought to be able to explore and visualize the effects of small changes in the parameters of the model. With respect to the latter point, a thorough development of simulation methodology and the availability of fast, inexpensive, and user-friendly computing and visualization tools would allow one to treat mathematical modeling as an experimental science, in addition to its being a mathematical science [see, for example, Spain (1982)]. Simulation, dynamic visualization, and data summarization tools can be effectively used to teach students how to build interesting deterministic and stochastic models of scientific phenomena and engineering processes, how to gain a better understanding of the underlying mechanisms, and how to find meaningful explanations of the observable behaviors.

Deterministic modeling of dynamic systems in many areas of application can be accomplished with a flexible software package, called STELLA II, that allows the user to employ a simple set of graphics icons to construct a diagram of the process. The defining set of linear differential equations is then generated automatically. Sensitivity to the initial conditions and/or the values of the system parameters can be assessed with multirun analyses (Hannon and Matthias 1994). Stochastic behavior can be introduced by allowing some or all of these parameters to be random, but direct modeling of the probabilistic evolution of the process (in terms of conditional distributions of the future states of the process given its history) is not easily implementable.

Stochastic modeling of dynamic systems in the engineering disciplines can be achieved, to a limited extent, with special-purpose simulation languages (e.g., SIMAN, SLAM, GPSS/H, SIMSCRIPT, WITNESS, SIMFACTORY) that have animation capabilities. However, the time and effort required of students to become familiar with these programming environments tend to outweigh the educational benefits. From a technical point of view the animation capabilities of these simulation languages are most useful in displaying a single sample path (realization over time) of a single process; they are weak on displaying multiple sample paths of multiple processes simultaneously. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Computer-Aided Teaching of Probabilistic Modeling for Biological Phenomena
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.