Optimal Crop Selection Using Multiobjective Evolutionary Algorithms

By Brunelli, Ricardo; von Lucken, Christian | AI Magazine, Summer 2009 | Go to article overview

Optimal Crop Selection Using Multiobjective Evolutionary Algorithms


Brunelli, Ricardo, von Lucken, Christian, AI Magazine


An adequate use of land resources is an essential guarantee of sustainable development, and many authors have suggested different approaches (Chi-Mei et al. 2002; Stewart, Janssen, and van Herwijnen 2004; Matthews et al. 2000; Tsuruta, Hoshi, and Sugai 2001; Bocco, Sayago, and Tartara 2002). The optimal use of soils is the basis of all forms of sustainable land use, that is, agricultural land use that remains productive in the long term. There are many benefits of an optimal use of soils, such as a decrease of rural poverty, watershed protection, increased biodiversity, more sustainable agricultural production, and increased food security (Schroth and Sinclair 2003). Therefore, optimal soil use planning is an important problem with social, economic, and ecological implications.

Cultivation areas are usually divided in parcels, each one becoming a production unit. Every year farmers have to decide what to plant in each parcel. This requires the analysis of tradeoffs between investments that have to be made, expected profits, economical risks, and environmental effects of cultivation (Schroth and Sinclair 2003). Sustainable agricultural soil use requires making the land available for farming as productive as possible while considering the environmental impact of the cultivation process. Under natural conditions, soils present chemical restrictions for crop development. Chemical soil tests are used to provide information about acidity and nutrient levels of each land parcel. According to the requirements of crops to be cultivated, it is usual to modify soil chemical characteristics, changing the quantity of nutrients and acidity through fertilizing and liming, making productive agriculture possible but affecting the quality of soils, groundwater repositories, and the overall environment (Johnson, Adams, and Perry 1991). Furthermore, economic restrictions may constrain farmers to use small quantities of mineral fertilizers or sometimes none at all, making it necessary to use the nutrients available in the soil as efficiently as possible (Schroth and Sinclair 2003). Hence, determining the crop that best fits the chemical characteristics of each production unit is an interesting alternative to reduce the cost of soil treatment at the same time as minimizing the potential ecological damages. On the other hand, farmers want to cultivate crops with the best possible return and minimum economic risk under a set of possible scenarios. Historical yield values and crop prices can be used to simulate future economic scenarios in order to obtain expected values and measure economic risks.

Ecological and economical considerations make the selection of a crop cultivation strategy a difficult multiobjective problem. In searching for solutions to multiobjective problems, there is no single optimal solution but rather a set of solutions. These solutions are optimal in the sense that no other solutions in the search space are superior to them when all objectives are considered. They are generally known as Pareto optimal solutions (Coello Coello, van Veldhuizen, and Lamont 2007).

Multiobjective evolutionary algorithms (MOEAs) have proved to be useful tools to solve multiobjective problems in various domains (Coello Coello, van Veldhuizen, and Lamont 2007). Therefore, this work uses an MOEA-based approach that combines aspects of knowledge in agricultural science and an economic scenario generator to approximate the solution set for an optimal agricultural soil usage of various parcels considering five different crops (soybeans, wheat, corn, sunflower, and sorghum) and the optimization of five different objectives simultaneously. Objectives considered in this work are (1) to minimize the costs of fertilizing and liming, (2) to minimize the total cost of cultivation, (3) to maximize the expected return, (4) to maximize the worst-case return, and (5) to minimize the standard deviation of possible returns.

The approach presented in this work was applied using real data and run using the strength Pareto evolutionary algorithm (SPEA) (Zitzler and Thiele 1999) and the strength Pareto evolutionary algorithm 2 (SPEA2) (Zitzler, Laumanns, and Thiele 2001). …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Optimal Crop Selection Using Multiobjective Evolutionary Algorithms
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.