From Human Genome Research to Personalized Health Care: The Potential Is Widely Recognized, but Much More Knowledge Is Needed to Make the Science Clinically Useful

By Omenn, Gilbert S. | Issues in Science and Technology, Summer 2009 | Go to article overview

From Human Genome Research to Personalized Health Care: The Potential Is Widely Recognized, but Much More Knowledge Is Needed to Make the Science Clinically Useful


Omenn, Gilbert S., Issues in Science and Technology


"Big Science" in the life sciences was launched in 1986 with a bold plan to develop the technologies to determine the sequence of the 3 billion nucleotide base pairs (letters of DNA code) in the human genome. The Human Genome Project declared success by 2001 and has stimulated a wealth of related research. Analyses of the genomes of many organisms have yielded powerful evidence of sequences conserved during evolution. Analyses of microorganisms set the stage for pathogen/host interaction studies. Essentially all fields of life sciences research have been transformed by knowledge of protein-coding genes, recognition of genomic variation across individuals, findings of new mechanisms of regulation of gene expression, and patterns of proteins and metabolites in generating the features of living organisms. From the beginning, there have been high expectations that such knowledge would enhance clinical and public health practice through understanding of predispositions to disease, identification of molecular signatures and biomarkers for stratification of patients with different subtypes of a disease, earlier diagnoses, and discovery of molecular targets for therapeutic and preventive interventions.

There has been compelling evidence for at least 150 years that genetics plays a major role in many traits and diseases. Identical twins are much more likely to manifest similar traits and develop similar diseases than are fraternal twins (or regular siblings). Modern researchers first tested individual genes that seemed scientifically related to a particular disease. Now gene chips can probe 500,000 sequences throughout the genome for variation in single-nucleotide polymorphisms (SNPs) and segments of chromosomes. Genome-wide association studies have demonstrated genetic influence on height; glucose, cholesterol, and blood pressure levels; and risks for childhood-onset and adult-onset diabetes, macular degeneration of the retina, various cancers, coronary heart disease, mental illnesses, inflammatory bowel disease, and other diseases. Enthusiasm about these statistical associations stimulated the formation of companies to offer testing services with direct-to-consumer promotion. However, the market was leaping way ahead of the science.

Serious limitations in this approach have now been recognized. First, stringent statistical criteria are required to reduce the likelihood of false-positive associations, since such large numbers of genomic variants (SNPs) are tested. Second, very few of the highly associated genomic variants actually alter protein-coding gene sequences; this is no surprise, since our 20,000 protein-coding genes take up only 1.5% of the genome sequence. Tying genomic variants to nearby protein-coding genes is highly speculative, making predictions of the functional effects of the variation quite uncertain. Third, the 20 genomic variants associated with height together account for only 3% of the actual variation in height; similarly, 20 or more genomic variants associated with a risk of diabetes account for less than 10% of the risk. The results are not a sufficient basis for predictive medicine. Undeterred, geneticists are screening a far larger set of SNPs to identify more variants of small effect and are searching for less common variants that might have larger effects on disease risk. They are also using new sequencing methods that aim to find all variation, not just sample the SNP sites. The cost of SNP genotyping is now under $1,000 per person. The cost of sequencing, meanwhile, has dropped from the original investment of $3 billion to obtain the first sequence to an estimated $10,000 to sequence an individual with the latest technology, and may reach $1,000 in the next few years.

I believe that much of the unexplained variation in susceptibility will be explained by nongenetic environmental and behavioral risk factors that interact with genetic variation to mediate the risk and severity of disease. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

From Human Genome Research to Personalized Health Care: The Potential Is Widely Recognized, but Much More Knowledge Is Needed to Make the Science Clinically Useful
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.