Machine-Learning Research; Four Current Directions

By Dietterich, Thomas G. | AI Magazine, Winter 1997 | Go to article overview

Machine-Learning Research; Four Current Directions


Dietterich, Thomas G., AI Magazine


* Machine-learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (1) the improvement of classification accuracy by learning ensembles of classifiers, (2) methods for scaling up supervised learning algorithms, (3) reinforcement learning, and (4) the learning of complex stochastic models.

The last five years have seen an explosion in machine-learning research. This explosion has many causes: First, separate research communities in symbolic machine learning, computational learning theory, neural networks, statistics, and pattern recognition have discovered one another and begun to work together. Second, machine-learning techniques are being applied to new kinds of problem, including knowledge discovery in databases, language processing, robot control, and combinatorial optimization, as well as to more traditional problems such as speech recognition, face recognition, handwriting recognition, medical data analysis, and game playing.

In this article, I selected four topics within machine learning where there has been a lot of recent activity. The purpose of the article is to describe the results in these areas to a broader AI audience and to sketch some of the open research problems. The topic areas are (1) ensembles of classifiers, (2) methods for scaling up supervised learning algorithms, (3) reinforcement learning, and (4) the learning of complex stochastic models.

The reader should be cautioned that this article is not a comprehensive review of each of these topics. Rather, my goal is to provide a representative sample of the research in each of these four areas. In each of the areas, there are many other papers that describe relevant work. I apologize to those authors whose work I was unable to include in the article.

Ensembles of Classifiers

The first topic concerns methods for improving accuracy in supervised learning. I begin by introducing some notation. In supervised learning, a learning program is given training examples of the form {([x.sub.1], [y.sub.1]), ..., ([x.sub.m], [y.sub.m]) for some unknown function y = f(x). The [x.sub.i] values are typically vectors of the form <[x.sub.i,1], [x.sub.i,2], ..., [x.sub.i,n]> whose components are discrete or real valued, such as height, weight, color, and age. These are also called the features of [x.sub.i]. I use the notation [x.sub.ij] to refer to the jth feature of [x.sub.i]. In some situations, I drop the i subscript when it is implied by the context.

The y values are typically drawn from a discrete set of classes {1, ..., K) in the case of classification or from the real line in the case of regression. In this article, I focus primarily on classification. The training examples might be corrupted by some random noise.

Given a set S of training examples, a learning algorithm outputs a classifier. The classifier is a hypothesis about the true function f. Given new x values, it predicts the corresponding y values. I denote classifiers by [h.sub.1], ..., [h.sub.L].

An ensemble of classifiers is a set of classifiers whose individual decisions are combined in some way (typically by weighted or unweighted voting) to classify new examples. One of the most active areas of research in supervised learning has been the study of methods for constructing good ensembles of classifiers. The main discovery is that ensembles are often much more accurate than the individual classifiers that make them up.

An ensemble can be more accurate than its component classifiers only if the individual classifiers disagree with one another (Hansen and Salamon 1990). To see why, imagine that we have an ensemble of three classifiers: {[h.sub.1], [h.sub.2], [h.sub.3]}, and consider a new case x. If the three classifiers are identical, then when [h.sub.1](x) is wrong, [h.sub.2](x) and [h. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Machine-Learning Research; Four Current Directions
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.