Artificial Intelligence: A Comeback Story: For Many Traders Whose Careers Stretch through the 1990s, "Artificial Intelligence" Is a Tainted Phrase. However, Technology and Best Practices Are Finally Starting to Catch Up to the Original Promise, and While Artificial Intelligence Is Not a Magic Bullet, It Is Now a Reasonable Addition to Any Trader's Toolbox

By Ruggiero, Murray A., Jr. | Futures (Cedar Falls, IA), October 2009 | Go to article overview

Artificial Intelligence: A Comeback Story: For Many Traders Whose Careers Stretch through the 1990s, "Artificial Intelligence" Is a Tainted Phrase. However, Technology and Best Practices Are Finally Starting to Catch Up to the Original Promise, and While Artificial Intelligence Is Not a Magic Bullet, It Is Now a Reasonable Addition to Any Trader's Toolbox


Ruggiero, Murray A., Jr., Futures (Cedar Falls, IA)


Many segments of the field of study involving artificial intelligence have found their way into the trading industry today. There are individual types of networks and related methods such as kernel regression. In addition, there are several different types of genetic algorithms and machine induction.

The influx of these tools began in force with the 1990s. Neural networks were the new buzzword in trading, and nearly all large traders and institutions invested heavily in this technology. During the mid 1990s, genetic algorithms and machine learning bloomed. With only a few exceptions, this first boom period was not a success. Most of the trading strategies developed did not hold up in the future. The primary reasons were:

1) Analysts tried to make neural networks and other artificial intelligent methods do too much. They made them the heart of the system. If the network failed, so did the system.

2) Unique technical factors, such as how neural networks start from random weights and produce different results each time you train them, caused them to fall out of favor.

It is now 20 years since the first neural network boom started, and they are making a comeback, not just neural networks, but other advanced technologies such as genetic algorithms, machine rule induction, fuzzy logic and chaos theory.

During the first two boom periods, these technologies were taken in isolation. For example, one developer would focus on neural networks; another would apply only genetic programming. The present trend involves integrating multiple technologies. If we review the professional journals in this field, we see that for most of the period 2001-06, scholars wrote few articles that applied a.i. methods to trading. Now, academic research in this area is booming once again.

In this, the first of a multi-part series on artificial intelligence's comeback, we'll overview past attempts and examine why this comeback may be different.

A BRIEF HISTORY

Neural network technology takes its cue from the human brain by emulating its structure. Work on neural networks was started in the 1940s and was followed in 1957 by the advent of Frank Rosenblatt's "Perceptron," which was a linear classifier, or the simplest kind of feed forward neural network (see "Perceptron simplified," above).

The neuron is the basic structural unit of a neural network. If the neuron receives enough signals, the neuron fires and triggers all of its outputs. A neuron receives any number of inputs, possessing weights based on their importance. With a real neuron, the weighted inputs are summed and output is based on a threshold function sent to every neuron downstream. Finally, all of the impulses are passed along until the output layer is reached and the output signals are translated into real work information.

Although this system worked well for simple problems, it was demonstrated in 1969 that non-linear classifications called "exclusive/or" problems were impossible to solve. The exclusive/or problem is a simple real-world problem. For example, it is possible to go shopping or to the movies, but it is not possible to do both at the same time (see "Pick and choose," right).

Neural networks represent a branch of computing science called machine learning, which includes two major branches, namely supervised and unsupervised learning. In supervised learning, applications learn via a teacher and compare the output with the current weights to produce the answer. This is how the original Perceptron worked and this type of neural network is most often used in financial analysis. The calculated value is compared to the actual value and the weights are adjusted to minimize the error across the complete training set. The goal of machine learning is for the neural network to learn the training set well and produce good answers on new cases that have never been seen before.

In 1986, a paper was presented on an algorithm called "back propagation," announcing the discovery of a method allowing a network to learn to discriminate between not linearly separable classes. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • A full archive of books and articles related to this one
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Artificial Intelligence: A Comeback Story: For Many Traders Whose Careers Stretch through the 1990s, "Artificial Intelligence" Is a Tainted Phrase. However, Technology and Best Practices Are Finally Starting to Catch Up to the Original Promise, and While Artificial Intelligence Is Not a Magic Bullet, It Is Now a Reasonable Addition to Any Trader's Toolbox
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

    Already a member? Log in now.