Critical Times in One- and Two-Layered Diffusion

By Hickson, Roslyn I.; Barry, Steven I. et al. | Australasian Journal of Engineering Education, October 2009 | Go to article overview

Critical Times in One- and Two-Layered Diffusion

Hickson, Roslyn I., Barry, Steven I., Sidhu, Harvinder S., Australasian Journal of Engineering Education

1 INTRODUCTION

An important consideration in applications modelled by diffusion is: how long does the diffusive process take? For example, in steel annealing (Barry & Sweatman, 2009; McGuinness et al, 2009; Yuen, 1994), a steel coil is heated by imposing an external temperature; an important consideration is when the coldest point in the coil reaches a given temperature. Similar applications include determining the effectiveness of drug carriers inserted into living tissue (Pontrelli & de Monte, 2007) and the performance of electrodes (Freger, 2005). Numerous other applications are referenced in Hickson et al (2009b). The essential elements of finding this heating time, or critical time, are well illustrated by considering heat diffusion through either one or two layers. The single-layer analysis involves traditional methods taught in second-year engineering mathematics classes with some interesting extensions. The two-layer solution in section 4 of this paper, although more algebraically complicated, involves few new concepts and makes a suitable project extension for more advanced undergraduate students.

The solution to the heat equation through a single medium with imposed temperature on the boundary (see figure 1(a)) is a classical application of separation of variables. Explicitly separating the solution into "steady-state" and "transient" components is not necessarily seen at an undergraduate level, but is conceptually the same as splitting a second-order inhomogeneous equation into the homogeneous and particular solutions. Traditional engineering mathematics textbooks usually stop when the solution is found, despite this solution being an infinite series with little meaning to the students. By considering the critical time, this solution can be used to provide both motivation and a better understanding of what the solution means.

The "critical time" for diffusion can be defined in many ways. In the context of the steel annealing application, the critical time is defined as the amount of time taken for the coldest point in the coil to reach the desired temperature. A common definition is the time when the average temperature reaches a proportion of the average steady-state. That is, the value of t = [t.sub.c] such that:

[[integral].sup.L.sub.0] U(x,[t.sub.c])dx = [alpha][[integral].sup.L.sub.0] w(x)dx (1)

where U(x, t) is the temperature, 0 < [alpha] < 1 is a chosen constant, and w(x) is the steady-state. Landman & Australasian journal of Engineering Education, Vol 15 No 2 McGuinness (2000) summarised previous work and applications using this critical time definition, also called the mean action time (McNabb, 1993). An additional more complex definition (Crank, 1975) is found by calculating the asymptote of the net heat flux. For a simple scenario of imposing a temperature at the boundary of a single material layer, this gives a critical time [t.sub.av] of:

[t.xub.av] = [L.sup.2]/6[D.sub.av] (2)

which is shown in section 3 to be when [alpha] [approximately equal to] 0.8435 in equation (1). Here L is the length of the medium and [D.sub.av] is the diffusivity. When two layers are considered this equation is often used (see for example Ash et al (1965) and Graff et al (2004)) with [D.sub.av] defined by:

L/[D.sub.av] = [l.sub.1]/[D.sub.1] + [l.sub.2]/[D.sub.2] (3)

where [l.sub.1] and [l.sub.2] are the lengths of layers one and two, respectively, and [D.sub.1] and [D.sub.2] are the diffusivities of layers one and two. The limitations of this approximation are more fully investigated and discussed in Absi et al (2005) and Hickson et al (2009a; 2009b; 2009c).

[FIGURE 1 OMITTED]

In this paper we first outline, in section 2, the model and solution method for a single layer with two different boundary conditions. These solutions are then used to find the critical time in section 3, and the two different boundary condition cases are compared. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

Critical Times in One- and Two-Layered Diffusion
Settings

Settings

Typeface
Text size Reset View mode
Search within

Look up

Look up a word

• Dictionary
• Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
• Highlights & Notes
• Citations
Some of your highlights are legacy items.

Questia reader help

How to highlight and cite specific passages

1. Click or tap the first word you want to select.
2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

Cited passage

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

"Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Thanks for trying Questia!

Please continue trying out our research tools, but please note, full functionality is available only to our active members.

Your work will be lost once you leave this Web page.

Buy instant access to save your work.

Already a member? Log in now.

Search by...
Show...

Oops!

An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.