Life from Scratch: Relaunching Biology from the Beginning

By Petit, Charles | Science News, July 3, 2010 | Go to article overview

Life from Scratch: Relaunching Biology from the Beginning


Petit, Charles, Science News


[ILLUSTRATION OMITTED]

A short stroll from Boston's Charles River, behind a sheath of blue glass on the seventh floor of a Harvard Medical School research building, Jack Szostak is getting set to replay the greatest event on Earth.

He and his 15-member team of graduate students and young postdoctoral research fellows are well on their way to startingbiology from scratch--more than 3.5 billion years after it first emerged.

The feat would qualify as creation of life in a test tube if it weren't for one thing: Szostak's lab does not rely much on test tubes. "I know exactly where it will happen," said postdoc Alonso Ricardo, from Cali, Colombia. It will most likely be in a 1.5-milliliter tapered plastic centrifuge tube "smaller than my little finger." And unlike the first time--when life formed on its own--the second time it will get a boost from human ingenuity and the lab's elaborate organic chemistry equipment.

Szostak's endeavor is very different from another artificial life project led by biologist and entrepreneur J. Craig Venter. Venter's team is using chemical sequencing machines to make a panoply of genes for the highly evolved parts of a modern microbe. Recently he and his colleagues announced that they had inserted an entire genetic blueprint, modeled on a known microbe but built from scratch, into a microbe of another species where the synthesized DNA took over (SN: 6/19/10, p. 5). Venter's ultimate aim is to build designer organisms with novel and fully contemporary genomes.

Szostak has a far more fundamental aim: to show how unguided natural events might have led to life on Earth in the first place, and to show how the scenario might also play out in myriad other places in the universe. Like bookends on a long row of volumes, the two exercises would frame the story of evolution so far.

In his neat corner office outside the rows of lab benches and work bays, the 57-year-old biochemist leaned forward and explained a deep motivation: "What we'd like to see is, from initial chaos and randomness, how something useful emerges. What we are trying to do, to understand, is how Darwinian evolution can emerge from chemistry.... If we can get a self-propagating chemical system that can evolve, yeah, I'd call that life."

A place to start

Szostak brings a lot of tools to the project. He has already made his mark on biology throughout a career puzzling over and exploring the workings of DNA and its cousin, RNA. He was a winner last October of the Nobel Prize in physiology or medicine, along with Elizabeth Blackburn of the University of California, San Francisco and Carol Greider of Johns Hopkins University School of Medicine in Baltimore. In the 1980s they showed how telomeres, distinctive caps on the ends of chromosomes, protect a living cell's DNA and genes from degradation.

Szostak, a U.S. citizen now, was born in London, where his father was stationed with the Royal Canadian Air Force. After returning home, Szostak enrolled in McGill University in Montreal at age 16. At 19 he took his degree in cell biology to graduate school at Cornell University. He dove into genetics. Nature published an extract from his biochemistry Ph.D. thesis--on synthetic RNA. At 26 he joined Harvard's faculty, where he is now a professor of genetics and a Howard Hughes Medical Institute investigator.

By the mid-1980s, electrifying word swept the field of DNA and RNA research. Tom Cech of the University of Colorado at Boulder and Sidney Altman of Yale University independently discovered that RNA--believed to be a mere messenger, carrying genetic blueprints from DNA-based genes to cellular machinery for making proteins--had another trick. It could fold into complex shapes, forming an enzyme that vastly speeds up the natural rate of some reactions (SN: 11/27/82, p. 342). Until then, the only known enzymes were specialized proteins. How life had first made proteins without enzymes, which presumably had to be proteins themselves, had been a chicken-and-egg conundrum. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Life from Scratch: Relaunching Biology from the Beginning
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.