"Eco-Logical" Engineering: A Teaching-Research Model to Foster Students' Paradigm Thinking of Wastes as Commodities

By O'Sullivan, A. D. | Australasian Journal of Engineering Education, June 2010 | Go to article overview

"Eco-Logical" Engineering: A Teaching-Research Model to Foster Students' Paradigm Thinking of Wastes as Commodities


O'Sullivan, A. D., Australasian Journal of Engineering Education


1 INTRODUCTION

Engineers are charged with important technical and business decisions on projects that modify the natural environment by consuming biophysical resources and generating ensuing wastes (Head, 2009; Mitchell, 2000). As economies grow, there is a limit to the availability of raw resources and to the assimilation capacity of Earth to process waste products (Head, 2009; Meadows et al, 1972). Hence, there is a pressing need to exercise resource conservation facilitated through material reuse (Clift, 1998). It is argued that in order to optimise resource use efficiency with concomitant waste minimisation, a systems approach is critical in research and in practice (Baumann et al, 2002). According to the 2nd Law of Thermodynamics, all technology inevitably produces material entropy, which are typically waste by-products. High energy-intensive technologies lead to large amounts of waste that become harder for ecosystems to assimilate, since high entropy wastes are incompatible with the low entropy inherent in nature's biosystems. A logical solution to this incompatibility is to develop engineering solutions based on whole systems integration that capitalise on embodied energy in waste products. These wastes thus become realised as feed streams for other technologies and so serve as a new commodity or reusable resource.

Society has become increasingly concerned about waste generation (eg. Clift, 1998) especially as New Zealand markets its lucrative tourist economy on the "clean-green" image. Recent national policies, including the 2002 Waste Strategy, provided impetus for achieving a vision and target of zero waste initiatives. The New Zealand Ministry for the Environment reported that 93% of raw materials are discarded during processing and do not end up as saleable products (Environment New Zealand, 2007). Consequently, the government is actively promoting a paradigm shift in waste management as a means of disassociating the volume of waste generated with economic growth, as outlined in the 2007 cabinet policy paper "POL (07) 132--Towards a Sustainable New Zealand". This aims to achieve economic wealth without compromising our environmental capital and is a good step towards implementing sustainable development through triple-bottomline (ecologic, economic and social) principles. It is therefore relevant to reassess how we manage our wastes and seek creative and innovative yet cost-effective opportunities to reuse these wastes. This rethinking in the waste management sector has been previously outlined (Clift, 1998) and the paradigm shift is essential so that many wastes can actually be realised as commodities or "misplaced" resources. This provided motivation for prescribing the "wastes to commodities" undergraduate research assignment that presents as a teaching model to foster integrated problem-solving and creativity required for sustainable engineering.

Engineers are responsible for creative and innovative solutions to solve challenging technical problems (Head, 2009). As such, it is important to facilitate creative opportunities in an engineering learning context to enable graduates to practice creative, challenging and sustainable problem-solving facilitating professional intrapreneurialship (Menzel, 2007). In a prerequisite course (Ecological Engineering 1), engineering students learnt the theoretical principles of "Eco-Logical" Engineering, including resource conservation. By cementing these fundamentals in a desktop research assignment presented here, students were empowered to think creatively and in an integrated holistic manner, while seeking practical solutions for reducing our nation's waste footprint. This paper presents a model (with detailed results) of how engineering students were guided in seeking sustainable solutions for real-world and contextual waste engineering challenges through ecological engineering research.

Ecological engineering is a discipline established in Europe and North America about 30 years ago, but with roots in ancient China (Odum & Odum, 2003). …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

"Eco-Logical" Engineering: A Teaching-Research Model to Foster Students' Paradigm Thinking of Wastes as Commodities
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.