Genotoxic Effects in Swimmers Exposed to Disinfection By-Products in Indoor Swimming Pools

By Kogevinas, Manolis; Villanueva, Cristina M. et al. | Environmental Health Perspectives, November 2010 | Go to article overview

Genotoxic Effects in Swimmers Exposed to Disinfection By-Products in Indoor Swimming Pools


Kogevinas, Manolis, Villanueva, Cristina M., Font-Ribera, Laia, Liviac, Danae, Bustamante, Mariona, Espinoza, Felicidad, Nieuwenhuijsen, Mark J., Espinosa, Aina, Fernandez, Pilar, DeMarini, David M., Grimalt, Joan O., Grummt, Tamara, Marcos, Ricard, Environmental Health Perspectives


BACKGROUND: Exposure to disinfection by-products (DBPs) in drinking water has been associated with cancer risk. A recent study (Villanueva et al. 2007; Am J Epidemiol 165:148-156) found an increased bladder cancer risk among subjects attending swimming pools relative to those not attending.

OBJECTIVES: We evaluated adults who swam in chlorinated pools to determine whether exposure to DBPs in pool water is associated with biomarkers of genotoxicity.

METHODS: We collected blood, urine, and exhaled air samples from 49 nonsmoking adult volunteers before and after they swam for 40 min in an indoor chlorinated pool. We estimated associations between the concentrations of four trihalomethanes (THMs) in exhaled breath and changes in micronuclei (MN) and DNA damage (comet assay) in peripheral blood lymphocytes before and 1 hr after swimming; urine mutagenicity (Ames assay) before and 2 hr after swimming; and MN in exfoliated urothelial cells before and 2 weeks after swimming. We also estimated associations and interactions with polymorphisms in genes related to DNA repair or to DBP metabolism.

RESULTS: After swimming, the total concentration of the four THMs in exhaled breath was seven times higher than before swimming. The change in the frequency of micronucleated lymphocytes after swimming increased in association with higher exhaled concentrations of the brominated THMs (p = 0.03 for bromodichloromethane, p = 0.05 for chlorodibromomethane, p = 0.01 for bromoform) but not chloroform. Swimming was not associated with DNA damage detectable by the comet assay. Urine mutagenicity increased significantly after swimming, in association with the higher concentration of exhaled bromoform (p = 0.004). We found no significant associations with changes in micronucleated urothelial cells.

CONCLUSIONS: Our findings support potential genotoxic effects of exposure to DBPs from swimming pools. The positive health effects gained by swimming could be increased by reducing the potential health risks of pool water.

KEY WORDS: cancer, chlorination, disinfection by-products, genetics, genotoxicity, mutagenicity, swimming pools, water. Environ Health Perspect 118:1531-1537 (2010). doi:10.1289/chp.1001959 [Online 12 September 2010]

**********

Swimming in pools is an important recreational activity for hundreds of millions of people worldwide and has been associated with significant positive health benefits (Zwiener et al. 2007). Hygiene and water quality, especially infections caused by feces-associated microbes and protozoa, have been a priority for regulators and researchers (World Health Organization 2006). However, concerns have been raised regarding potential adverse health effects resulting from exposure to chemically disinfected swimming pool water (Zwiener et al. 2007).

As with drinking water, chlorination is the most common method of disinfection for swimming pools. The addition of chlorine to water results in the formation of hundreds of chlorination by-products because of the presence of organic matter (Richardson et al. 2007). Levels of disinfection by-products (DBPs) in swimming pool water are not necessarily higher than those in drinking water (Richardson et al. 2010). Swimming in an indoor pool, however, leads to a high uptake of compounds such as trihalomethanes (THMs), which are inhaled and absorbed by the skin (Whitaker et al. 2003; Xu and Weisel 2004, 2005). High levels of haloacetic acids also have been reported in swimming pools; however, these DBPs are likely not taken up at significant levels because they are nonvolatile, and uptake occurs mainly through ingestion. Another chemical class identified recently in chlorinated pools is nitrosamines (Walse and Mitch 2008), but their uptake via swimming has not been studied.

Epidemiological studies have shown that long-term consumption of chlorinated water and exposure to THMs at levels found currently in drinking water in many industrialized countries are associated with an increased risk of bladder cancer (Villanueva et al. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

Genotoxic Effects in Swimmers Exposed to Disinfection By-Products in Indoor Swimming Pools
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
  • Highlights & Notes
  • Citations
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.