Developing 3D Spatial Skills for Engineering Students

By Sorby, S. A. | Australasian Journal of Engineering Education, June 2007 | Go to article overview

Developing 3D Spatial Skills for Engineering Students


Sorby, S. A., Australasian Journal of Engineering Education


1 BACKGROUND

The ability to visualise objects and situations in one's mind, and to manipulate those images, is a cognitive skill vital to many career fields, especially those requiring work with graphical images. Spatial abilities have been widely studied and are known to be fundamental to higher-level thinking, reasoning and creative processes. Unfortunately, of all cognitive processes that have been investigated, spatial cognition shows some of the most robust gender differences favouring males, especially in the ability to mentally rotate three-dimensional (3D) objects. This has obvious implications for our attempts to encourage gender equity in technical and scientific fields. Recognising the importance of well-developed spatial skills for technological careers, the National Council of Teachers of Mathematics (NCTM) in the US has included benchmarks regarding the development of spatial abilities within the Precollege Mathematics Educational Standards (NCTM, 2000), and middle-school mathematics education has been a focus of national interest due mainly to the results of the Third International Mathematics and Science Study and state, national and local standards (Ai, 2002). Fortunately, although individuals vary in spatial performance, research has shown that most, if not all, of the component skills can be improved through training and practice.

2 PRIOR RESEARCH IN SPATIAL COGNITION

According to Piaget (Bishop, 1978), spatial skills are developed in three stages. In the first stage, topological skills are acquired. Topological skills are primarily two-dimensional (2D) and are acquired by most children by the age of 3-5. With these skills, children are able to recognise an object's closeness to others, its order in a group, and its isolation or enclosure by a larger environment. The second stage involves visualising 3D objects and perceiving what they will look like from different viewpoints, or what they would look like if they were rotated or transformed in space. Most children have typically acquired this skill by adolescence, however, if the object is unfamiliar, many students in high school or even college have difficulty visualising at this stage of development. In the third stage, people are able to visualise the concepts of area, volume and distance in combination with those of translation, rotation and reflection. At this stage, therefore, a person is able to combine measurement concepts with their previously acquired projective skills.

By one estimate, there are at least 84 different careers for which spatial skills play an important role (Smith, 1964). For technical professions, such as engineering, spatial visualisation skills and mental rotation abilities are especially important (Maier, 1994). Norman (1994) found that a person's spatial skill level was the most significant predictor of success in his/her ability to interact with and take advantage of the computer interface in performing database manipulations, and Sorby (2000) found that a person's spatial skills are related to his/her ability to effectively learn to use computer aided design software. Eyal & Tendick (2001) found that a person's spatial ability is related to his/her ability to effectively learn how to learn to use the modern-day laparoscopic equipment used throughout the medical profession. Tartre (1990) has suggested gender differences in spatial skills may be linked to math performance and, indeed, when mental rotation ability was held constant in one study, gender differences in mathematical problem solving disappeared (Casey et al, 1992).

A significant body of work in the chemical sciences was undertaken by Bodner and his co-workers in the late 1980s (Pribyl & Bodner, 1987; Carter et al, 1987; Bodner & McMillan, 1986). In those studies, it was noted that both spatial ability and gender can play a significant role in the success of students, particularly in entry-level classes such as General Chemistry. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Developing 3D Spatial Skills for Engineering Students
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.