A New Construction Method for Circle Cartograms

By Inoue, Ryo | Cartography and Geographic Information Science, April 2011 | Go to article overview

A New Construction Method for Circle Cartograms


Inoue, Ryo, Cartography and Geographic Information Science


Introduction

Acartogram is one of the most powerful visualization tools for spatial data in quantitative geography (e.g. Monmonier 1977; Dorling 1996; Tobler 2004). An area cartogram, one of the most familiar cartograms, is a transformed map on which the areas of regions are proportional to the data values. Deformation of the shape of regions and their displacements assist map-readers in intuitively recognizing the distribution of data represented on area cartograms. In this study, area cartograms are hereafter referred to as cartograms.

Cartograms are classified on the basis of two characteristics: the shapes and contiguities of regions indicated on the cartograms. For the shapes of regions, some cartograms use complex shapes (e.g. Tobler 1973; 1986; Dougenik et al. 1985; Gusein-Zade and Tikunov 1993; House and Kocmoud 1998; Keim et al. 2004, Gastner and Newman 2004; Inoue and Shimizu 2006), whereas others use simple shapes such as circles and rectangles. The ease of comparison between cartograms with complex shapes of regions and geographical maps enables map-readers to comprehend the characteristics of spatial data presented in such cartograms. However, comparison of cartograms with complex region shapes is difficult in terms of the size of the regions; in this sense, it is better to use simple shapes to express data.

Cartograms that express regions in the form of simple shapes are classified into two types on the basis of contiguities of the regions illustrated on them. One is contiguous cartograms; a rectangular cartogram proposed by Rasiz (1934) serves as an example. Rectangles represent regions, and different rectangles representing adjacent regions are placed contiguously. A rectangular cartogram is an effective visualization tool, as the size of regions is easy to perceive. However, its construction is difficult because it is impossible to maintain all contiguities of regions in many cases; it then becomes necessary to omit some of the contiguities. Therefore, although several solutions have been proposed (e.g. Heilmann et al. 2004; Speckmann et al. 2006; van Kreveld and Speckmann 2007), their applications are limited. The other type is non-contiguous cartograms; rectangular cartograms proposed by Upton (1991) and circle (or circular) cartograms proposed by Dorling (1996) are examples. They represent regions by rectangles and circles and omit the contiguities of regions. In particular, a circle cartogram is often used for visualization because of its simple construction algorithm.

Dorling (1996) first proposed a circle cartogram construction algorithm according to two requirements for an easily comprehensible resultant: 'avoid overlap of circles' and 'keep contiguity of regions as much as possible'. It is also important to 'keep the similarity of configuration between circles on cartograms and regions on geographical maps'; accordingly, the algorithm first places circles according to the geographical configuration of regions and then moves circles one by one in order to fulfill the requirements. The algorithm outputs results that express a spatial distribution of data, and that are widely used (e.g. Anselin et al. 2006; Herzog 2010). However, the relative positions of circles on cartograms sometimes differ greatly from the geographical maps; the displacement of circles then causes difficulty- in distinguishing which circles represent which regions.

There are two shortcomings with the previous algorithm. One is that the algorithm does not consider maintaining the relative position of circles explicitly. The information on region contiguity, includes information on the relative position of regions; however, this is not sufficient to keep the similarity of positions between circles on cartograms and the positions of corresponding regions on maps. The other shortcoming is that the previous algorithm moves circles one by one to search for a circle configuration that satisfies the requirements for circle cartogram construction. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

A New Construction Method for Circle Cartograms
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.