Global Air Quality and Health Co-Benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls

By Anenberg, Susan C.; Schwartz, Joel et al. | Environmental Health Perspectives, June 2012 | Go to article overview

Global Air Quality and Health Co-Benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls


Anenberg, Susan C., Schwartz, Joel, Shindell, Drew, Amann, Markus, Faluvegi, Greg, Klimont, Zbigniew, Janssens-Maenhout, Greet, Pozzoli, Luca, Van Dingenen, Rita, Vignati, Elisabetta, Emberson, Lisa, Muller, Nicholas Z., West, J. Jason, Williams, Martin, Demkine, Volodymyr, Hicks, W. Kevin, Kuylenstiema, Johan, Raes, Frank, Ramanathan, Veerabhadran, Environmental Health Perspectives


BACKGROUND: Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM [less than or equal to] 2.5 pin in aerodynamic diameter; [PM.sub.2.5]), are associated with premature mortality and they disrupt global and regional climate.

OBJECTIVES: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years.

METHODS: We simulated the impacts of mitigation measures on outdoor concentrations of [PM.sub.2.5] and ozone using two composition-climate models, and calculated associated changes in premature [PM.sub.2.5]-and ozone-related deaths using epidemiologically derived concentration-response functions.

RESULTS: We estimated that, for [PM.sub.2.5] and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of non-methane ozone precursor and organic carbon emissions as well as stronger mortality relationships for [PM.sub.2.5] relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration--response function.

CONCLUSIONS: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution.

KEY WORDS: air quality, climate change, health impact analysis, outdoor air, particulate matter. Environ Health Perspect 120:831-839 (2012). http://dx.doi.org/10.1289/ehp.1104301 [Online 14 March 2012].

Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM [less than or equal to] 2.5 pm in aerodynamic diameter; PM2.5), have been associated with deleterious effects on human health (e.g., Jerrett et al. 2009; Laden et al. 2006; Pope et al. 2002), agriculture (e.g., Ashmore 2005), and climate (e.g., Ramanathan and Carmichael 2008). Methane, a relatively short-lived greenhouse gas (residence time 8-10 years), is an ozone precursor that affects background ozone concentrations. Controlling methane emissions may be a promising means of simultaneously mitigating climate change and reducing global ozone concentrations, compared with controlling shorter-lived ozone precursors [nitrogen oxides (N[O.sub.x]), carbon monoxide (CO), and non-methane volatile organic compounds (NMVOCs)] (West et al. 2006, 2007). The latter may have larger and more immediate air quality and health benefits near the areas with emission reductions but smaller benefits (CO, NMVOC) or net disbenefits (N[0.sub.x]) for climate. Major anthropogenic sources of methane include fossil fuel production and distribution, landfills, livestock, rice cultivation, and wastewater treatment. BC is a product of incomplete combustion from sources such as biomass burning, transportation (mainly diesel vehicles), residential combustion, and industry, and is coemitted with other pollutants, including N[0.sub.x], NMVOCs, CO, sulfur dioxide (S[O.sub.2]), and organic carbon. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Global Air Quality and Health Co-Benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.