Potential External Contamination with Bisphenol A and Other Ubiquitous Organic Environmental Chemicals during Biomonitoring Analysis: An Elusive Laboratory Challenge

By Ye, Xiaoyun; Zhou, Xiaoliu et al. | Environmental Health Perspectives, March 2013 | Go to article overview

Potential External Contamination with Bisphenol A and Other Ubiquitous Organic Environmental Chemicals during Biomonitoring Analysis: An Elusive Laboratory Challenge


Ye, Xiaoyun, Zhou, Xiaoliu, Hennings, Ryan, Kramer, Joshua, Calafat, Antonia M., Environmental Health Perspectives


BACKGROUND: Biomonitoring studies are conducted to assess internal dose (i.e., body burden) to environmental chemicals. However, because of the ubiquitous presence in the environment of some of these chemicals, such as bisphenol A (BPA), external contamination during handling and analysis of the biospecimens collected for biomonitoring evaluations could compromise the reported concentrations of such chemicals.

OBJECTIVES: We examined the contamination with the target analytes during analysis of biological specimens in biomonitoring laboratories equipped with state-of-the-art analytical instrumentation.

DISCUSSIONS: We present several case studies using the quantitative determination of BPA and other organic chemicals (i.e., benzophenone-3, triclosan, parabens) in human urine, milk, and serum to identify potential contamination sources when the biomarkers measured are ubiquitous environmental contaminants.

CONCLUSIONS: Contamination with target analytes during biomonitoring analysis could result from solvents and reagents, the experimental apparatus used, the laboratory environment, and/or even the analyst. For biomonotoring data to be valid--even when obtained from high-quality analytical methods and good laboratory practices--the following practices must be followed to identify and track unintended contamination with the target analytes during analysis of the biological specimens: strict quality control measures including use of laboratory blanks; replicate analyses; engineering controls (e.g., clean rooms, biosafety cabinets) as needed; and homogeneous matrix-based quality control materials within the expected concentration ranges of the study samples.

KEY WORDS: benzophenone-3, biomonitoring, bisphenol A, exposure assessment, parabens, reagent blank, triclosan. Environ Health Perspect 121:283-286 (2013). http://dx.doi.org/10.1289/ehp.1206093 [Online 16 January 2013]

Humans are exposed to environmental chemicals through industrial and indoor air pollution, diet, and use of personal care and consumer products. Biomonitoring (i.e., measurement of the environmental chemicals or their metabolites in biological speciments) is widely used to assess human internal exposure (i.e., body burden) to these chemicals [Centers for Disease Control and Prevention (CDC) 2012; Den Hond et al. 2011; Frery et al. 2012; Health Canada 2010; Kim et al. 2011; National Research Council 2006; Suzuki et al. 2010].

Proper biomonitoring practices take into account the selection of the relevant biomarker and biomonitoring matrix, the potential impact of the collection protocol on the biomarker levels in the sample, as well as the integrity of the sample during its collection, handling, storage, and analysis (Calafat and Needham 2009). Furthermore, accurate and precise highly sensitive and selective multianalyte analytical methods for extraction, separation, and detection of the environmental chemicals are required to obtain valid biomonitoring data (Angerer et al. 2007). Participation in external quality assessment programs [e.g., Arctic Monitoring and Assessment Program (Institut National de Sante Publique du Quebec 2012), German External Quality Assessment Scheme (G-EQUAS; Social and Environmental Medicine of the University Erlangen-Nuremberg 2012)] and the use of standard reference materials (SRMs) from the National Institute of Standards and Technology (Keller et al. 2010; Schantz et al. 2013) are very useful tools to evaluate method accuracy.

However, even with the application of sophisticated and accurate methods, external contamination with some ubiquitous environmental organic chemicals, such as bisphenol A (BPA), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs), during sample analysis can compromise the analytical determination of these compounds [Alcock et al. 1994; Sjodin et al. 2004; World Health Organization (WHO) 2011]. External contamination can even preclude accurate analyses of phthalate diesters, which are detected in the cleanest laboratory reagents, sampling equipment, and analytical apparatus. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • A full archive of books and articles related to this one
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Potential External Contamination with Bisphenol A and Other Ubiquitous Organic Environmental Chemicals during Biomonitoring Analysis: An Elusive Laboratory Challenge
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

    Already a member? Log in now.