The Freshwater Reservoir Effect in Radiocarbon Dating

By Philippsen, Bente | Heritage Science, August 2, 2013 | Go to article overview

The Freshwater Reservoir Effect in Radiocarbon Dating


Philippsen, Bente, Heritage Science


Authors: Bente Philippsen (corresponding author) [1]

Introduction

Throughout the entire history of radiocarbon dating, new sources of error have appeared, have been examined, and corrections have been found. Of particular interest and complexity are the so-called reservoir effects, which result in apparent ages that are too old.

One of the basic assumptions in radiocarbon dating is that a sample incorporates carbon in equilibrium with the atmosphere. This can be directly, e.g. in a plant via photosynthesis, or indirectly, e.g. when an animal feeds on plants. This type of sample is called terrestrial. If a sample obtains its carbon from another reservoir with a lower [sup.14]C level than the atmosphere, the basic assumption is no longer valid. The measured ages can be too old. This is typically the case for aquatic samples, originating in the sea (marine samples) or in freshwater systems such as lakes and rivers. This is of particular concern to archaeologists, as aquatic resources were an important contribution to human nutrition in Northern Europe, from Mesolithic hunter-gatherer-fishers to medieval Christians.

The marine reservoir effect is well-acknowledged among archaeologists, although the knee-jerk subtraction of 400 years from radiocarbon dates of marine samples might be too simplistic in some cases.

At least theoretically, the freshwater reservoir effect (FRE) has been known for a longer time than the marine reservoir effect. The most common cause of high apparent ages in freshwater systems is the presence of dissolved ancient carbonates, leading to the so-called hardwater effect. Under closed system conditions, calcite dissolution by carbonic acid leads to a 50% dilution of the [sup.14]C concentration [1, 2], causing a maximum FRE of one half-life of [sup.14]C, about 5,370 years. Under open system conditions, water DIC is continuously exchanging with the infinite reservoir of [sup.14]C-active soil CO[sub.2], causing no reservoir offset. In reality, freshwater systems have intermediate conditions, and a FRE between 0 and almost 6,000 years is possible [1].

The hardwater effect was already predicted by J. Iversen in a private communication to E. S. Deevey, October 5, 1949 [3]. The effect was considered by Godwin in 1951 [4] when discussing radiocarbon dates from the British Isles, and measured for the first time in 1954 on aquatic plants [5]. The marine reservoir effect was observed and discussed slightly later in the 1950s [6, 7, 8].

However, it took several decades before the FRE was measured and discussed in archaeologically relevant sample types, such as human bones [9, 10, 11, 12, 13, 14] or food crusts on pottery [15, 16, 17, 18]. In these cases, the consumption or preparation of large amounts of freshwater fish lead to spurious apparent ages of the bones and pottery.

Also aquatic plants which are incapable of assimilating carbonates, and rely on CO[sub.2], such as aquatic mosses, can show a substantial FRE [19]. High apparent ages can also be measured in carbonate-free groundwater and surface water [20], and apparent ages of up to 20,000 BP were reported from an Icelandic geothermal area [21].

In softwater lakes, the FRE can be caused by slow CO[sub.2] exchange between the atmosphere and the lake water due to a large depth-to-surface ratio, good wind protection or extended periods of lake ice cover [22, 23]. Other causes for a soft-water FRE are the inflow of old groundwater [22], the oxidisation of old organic matter [24], the inflow of water from a glacier containing old CO[sub.2], or old CO[sub.2] from volcanic activity [23].

Freshwater reservoir effects can vary significantly within one lake or river [18, 25, 26], even when only regarding submerged plants [26], or a single fish species from one lake [27]. Furthermore, the FRE influences radiocarbon dating in fjords and estuaries and can lead to site and time specific reservoir ages [28, 29, 30]. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

The Freshwater Reservoir Effect in Radiocarbon Dating
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.