Research on the Modification of Two Traditional Building Materials in Ancient China

By Zuixiong, Li; Linyi, Zhao et al. | Heritage Science, August 21, 2013 | Go to article overview

Research on the Modification of Two Traditional Building Materials in Ancient China


Zuixiong, Li, Linyi, Zhao, Li, Li, Jinua, Wang, Heritage Science


Authors: Li Zuixiong [1,3]; Zhao Linyi (corresponding author) [1,3]; Li Li [2]; Wang Jinua [2]

Introduction

In the late 1970s, a group of residential remains of the Yangshao Period were discovered at the Dadiwan site in Qin?an County, Gansu Province, China [1]. One of these discoveries is named as ?original palace? (number F-901) in the archaeological world, and is the largest and top leveled residential site in prehistoric times. This site belongs to the middle Yangshao Period and was used for convocation, worshiping and religious ceremonies by tribes or tribe allies over 5000 years ago. When it was discovered, the site had a bright and clean house floor that was of exquisite workmanship. Preliminary research [2] indicates that the housing floor of the site was made by lightweight calcined Kunkur as aggregate and the powder of calcined ginger nut mixed with a small amount of laterite as bonding materials. After more than five thousand years, the compressive resistance of the floor is close to that of cement mortar No.100. Moreover, the remains of kilns for burning light weight concrete and ginger nut were discovered nearby the site. The research shows that the calcinated temperature of ginger nut could reach up to 900[degrees]C [3]. Ginger nut is a type of ginger stone (locally called as ginger nut) in quaternary loess and is composed of 60-80% calcium carbonate and 10-20% clay mineral. When ginger nut is calcinated at a temperature of 900[degrees]C, it will produce 25.8% [beta]-CaSiO[sub.3], 17.6% Ca[sub.2]Al[sub.2]SiO[sub.7] and 33.9% CaO. [beta]-CaSiO[sub.3] and Ca[sub.2]Al[sub.2]SiO[sub.7] are hydraulic binding materials, and CaO is a non-hydraulic binding material [4]. Therefore, the building materials of F-901 floor in which manmade hydraulic binding materials had been used can be called as the earliest ?concrete? in the world, which is a miracle in the history of architecture [3].

Aga soil is another kind of silicate building material widely used in Tibet, and it is the siliceous limestone [5] that contains 70?~?93% CaCO[sub.3] and 7?~?30% SiO[sub.2]. When Aga soil is used as building material for floor and house (roof), the unburned Aga soil with 40% in a diameter of 5.6 mm, 30% in a diameter of 2.6 mm and 30% 0.15 mm diameter will be made to pulp at the ratio of 0.32 water and then is rammed by a special stone pester. Until the grout completely becomes solid, it will be sanded first and then repeatedly polished with sheepskin and butter. This technique is called ?ramming Aga? [6], and for centuries, this traditional material and building technology have been used to construct floors and roofs of temples in Tibet.

In Tibet, there are over one thousand temples that are very valuable cultural relics, such as the well-known Potala Palace, Norbulingka Summer Palace and Sakya Monastery. The Chinese government attaches great importance to the conservation of Tibetan cultural relics. In the last two decades, two large projects for the conservation and restoration of key relics including the Potala Palace and Sakya Monastery have been carried out [5, 7]. The restoration work focuses on ancient buildings and murals, and the main kinds of deterioration are associated with Aga soil used in the roofs. In Tibetan, traditional materials for the roofs of the temple are unburned Aga soil that was crushed into the powder of 0.15 mm in diameters as ?gelation? and it was mixed with proper amount of natural gum [6] to make mortar. But unburned Aga soil has low strength and poor weathering resistance but the property of chemical gelatinization. Influenced by the freezing and thawing cycles and the fluctuating temperature and humidity, the natural gum will quickly deteriorate and break. When the rain infiltrated through the cracks, wooden components will decay, fall apart or become leaning, causing subsequent deterioration, such as detachment, large-area loss, disruption and flaking, and thus terribly damaging the murals [7]. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • A full archive of books and articles related to this one
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Research on the Modification of Two Traditional Building Materials in Ancient China
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

    Already a member? Log in now.