Computer Programming Goes Back to School: Learning Programming Introduces Students to Solving Problems, Designing Applications, and Making Connections Online

By Kafai, Yasmin B.; Burke, Quinn | Phi Delta Kappan, September 2013 | Go to article overview

Computer Programming Goes Back to School: Learning Programming Introduces Students to Solving Problems, Designing Applications, and Making Connections Online


Kafai, Yasmin B., Burke, Quinn, Phi Delta Kappan


We are witnessing a remarkable comeback of computer programming in schools. In the 1980s, many schools featured Basic, Logo, or Pascal programming computer labs that students typically visited once a week as an introduction to the discipline. But, by the mid-1990s, schools had largely turned away from programming. In large part, such decline stemmed from a lack of subject-matter integration and a dearth of qualified instructors. Yet there was also the question of purpose. With the rise of preassembled multimedia packages via glossy CD-ROMs over the 1990s, who wanted to toil over syntax typos and debugging problems by creating these applications oneself? This question alone seemingly negated the need to learn programming in school, compounded by the excitement generated by the Internet. Schools started teaching students how to best surf the web rather than how to delve into it and understand how it actually works. Schools largely forgot about programming, some deeming it entirely unnecessary and others labeling it too difficult to teach and learn.

But this is changing. In the past five years, we've seen a newfound interest in bringing back learning and teaching programming on all K-12 levels. But it's digitally based youth cultures, not schools, leading this revival (Kafai & Peppler, 2011). Computers seem to be accessible everywhere, particularly outside school, where children and youth are innovating with technology--often with hand-held devices --to create their own video games, interactive art projects, and even their own programmable clothes through electronic textiles. What's more, the same computers on which they create these items connect them to wider networks of other young users who share common interests and a similar commitment to connecting through making.

Schools may very well take a page from these informal communities of creative production and networked participation. After all, despite this surge of interconnected youth communities, very few youth are using their smart devices--laptop, iPad, iPhone, or Droid--for something other than the mass consumption of commercial media. These digital natives may be able to technically manipulate the latest devices, but their capacity to wield such devices critically, creatively, and selectively is decidedly less potent.

What then is the role of programming in facilitating more productive use of technology? And what is the role of schools in introducing programming to a wider array of youth, particularly given schools' own aborted attempts to teach coding in the past? How will schools address challenges of diversity and equity so prevalent in computing culture? Given these questions facing education as well as the economic viability of this country, we must first understand what computational thinking is, how we can teach it, and why the computational participation of online communities and traditional schools together offers new opportunities to engage students.

What is computational thinking?

In 2006, Carnegie Mellon professor Jeannette Wing defined computational thinking as all "aspects of designing systems, solving problems, and understanding human behaviors" (2006, p. 6). Wing argued that understanding the world computationally gives a particular lens to understanding problems and contributing to their solutions. Computational thinking--while often strictly associated with computer science--actually is better understood as extending computer science principles to other disciplines in order to help break down the elements of any problem, determine their relationship to each other and the greater whole, and then devise algorithms to arrive at an automated solution. Computational thinking isn't limited to mathematics and the sciences but also applies to the humanities in fields such as journalism and literature.

Thinking like a computer scientist has the potential to better articulate and advance other academic disciplines. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

Computer Programming Goes Back to School: Learning Programming Introduces Students to Solving Problems, Designing Applications, and Making Connections Online
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
  • Highlights & Notes
  • Citations
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.