DNA Methylation in Oocytes and Liver of Female Mice and Their Offspring: Effects of High-Fat-Diet-Induced Obesity

By Ge, Zhao-Jia; Luo, Shi-Ming et al. | Environmental Health Perspectives, February 2014 | Go to article overview

DNA Methylation in Oocytes and Liver of Female Mice and Their Offspring: Effects of High-Fat-Diet-Induced Obesity


Ge, Zhao-Jia, Luo, Shi-Ming, Lin, Fei, Liang, Qiu-Xia, Huang, Lin, Wei, Yan-Chang, Hou, Yi, Han, Zhi-Ming, Schatten, Heide, Sun, Qing-Yuan, Environmental Health Perspectives


Introduction

The World Health Organization has reported that obesity, defined as abnormal or excessive fat accumulation that may impair health, has nearly doubled since 1980, and nearly 300 million women were obese in 2008 (World Health Organization 2013). Several years ago obesity and overweight was a problem in developed countries, but it has now become a problem in the entire world. Obese humans are prone to type 2 diabetes, hypertension, cardiovascular disease, and other disorders or diseases (Howie et al. 2009), and these conditions can be transmitted to the future generations (Fullston et al. 2012; Howie et al. 2009).

Obesity is a well-established cause of subfertility in humans and animals. In mice fed a high-fat diet (HFD) for 16 weeks, ovulation rate, embryo development, placental function, ovarian function, and mitochondrial function were affected in oocytes (Cardozo et al. 2011; Igosheva et al. 2010; Jungheim et al. 2010; Minge et al. 2008). Dunn and Bale (2009) reported that offspring of obese female mice showed a significant increase in body length. In humans, similar results were reported for oocytes from mothers with a higher body mass index (BMI) (Wattanakumtornkul et al. 2003), and children of women with high BMI tended to accumulate more fat by 9 years of age than did children of women with lower BMI (Gale et al. 2007). These reports show that obesity causes female subfertility and also that these adverse effects can be inherited by the offspring.

Obesity can be caused by genetic mutations (Graff et al. 2013), but the environment and life style are also key reasons for obesity. Currently, overweight and obesity are attributed mainly to lifestyle factors such as excessive consumption of high-carbohydrate food, low physical activities, and other factors (McAllister et al. 2009). Several studies have provided evidence that macro- or micronutrients induce epigenetic changes in offspring (Heijmans et al. 2008; Tobi et al. 2009; Waterland and Jirtle 2003; Waterland et al. 2006). Therefore, epigenetic alterations may be an important link between the environment and genes by which obese parents transmit deleterious conditions to their children.

Genomic imprinting is a parental origin-specific gene-marking phenomenon that is crucial for normal mammalian development. Differentially methylated regions (DMRs) of imprinted genes are methylated on either the paternal or maternal allele (Reik et al. 2001; Sasaki and Matsui 2008). The DNA methylation status is established during gametogenesis and early embryo development (Lucifero et al. 2002). However, methylation patterns of genomic imprinting genes tend to be altered by a deleterious environment or manipulation (Anckaert et al. 2010; Khosla et al. 2001). The detailed mechanisms underlying these changes are still unknown.

On the basis of previous reports (Fullston et al. 2012; Howie et al. 2009), we hypothesized that maternal obesity may impair DNA methylation of imprinted genes in oocytes and that it can be transmitted to the offspring. To test our hypothesis, we used mice with HFD-induced obesity, a widely used animal model (Igosheva et al. 2010; Jungheim et al. 2010; Minge et al. 2008). We investigated the methylation patterns in DMRs of paternally imprinted gene H19, maternally imprinted genes Peg3 (paternally expressed 3), Snrpn (small nuclear ribonucleoprotein N), Igf2r (insulin-like growth factor 2 receptor), and Pegl in oocytes of control and obese animals and their offspring. Because other studies have shown that the expression of leptin (Lep) and Ppar-[alpha] (peroxisome proliferator-activated receptor a) is regulated by DNA methylation in their promoters and that the two genes are correlated to metabolism (Burdge et al. 2009; Cordero et al. 2011a, 2011b), we also investigated DNA methylation of these two genes. We also investigated DNA methylation patterns of intracisternal A particle (IAP) in oocytes.

Materials and Methods

Mice provided by the Beijing Vital River Experimental Animals Centre (Beijing, People's Republic of China) were housed under conditions of 12 hr light and 12 hr dark in a temperature- (23 [+ or -] 1[degrees]C) and humidity- (60 [+ or -] 5%) controlled room. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

DNA Methylation in Oocytes and Liver of Female Mice and Their Offspring: Effects of High-Fat-Diet-Induced Obesity
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
  • Highlights & Notes
  • Citations
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.