Programming Bacteria to Kill Cancer Cells; New Immunotherapy Research Holds Promises of Treating Cancer and Providing Long-Term Protection from Recurrence

By Bushak, Lecia | Newsweek, July 31, 2015 | Go to article overview

Programming Bacteria to Kill Cancer Cells; New Immunotherapy Research Holds Promises of Treating Cancer and Providing Long-Term Protection from Recurrence


Bushak, Lecia, Newsweek


Byline: Lecia Bushak

In the late 1800s, Dr. William Coley--a bone surgeon and cancer researcher at New York Cancer Hospital--observed something peculiar. A patient named Fred Stein was suffering from a tumor growing in his cheek--until he became infected by Streptococcus pyogenes bacteria (which causes strep throat). Shortly after his infection, the cancer began disappearing, as though the fever had burned it away.

Afterward, Coley began to notice that several other cancer patients who had recently undergone tumor-removal surgery were more likely to recover from their cancer if they developed a post-surgical infection. In an effort to figure out why, Coley began injecting inoperable cancer patients with streptococcal bacteria. These came to be known as "Coley toxins." In one case, Coley treated a 21-year-old man with a mix of bacteria and bacterial lysates--natural secretions of bacteria that keep the immune system on alert--who then had a complete remission.

Coley injected over 1,000 patients with his toxins--and many recovered. But he never properly documented all his cases or followed up with enough patients, and after his death in 1936, general medical opinion dismissed his methods in favor of radiation and chemotherapy. It wasn't until much later, when several pioneering cancer researchers revisited his work, that the medical community began to realize that Coley--sometimes called the "father of immunotherapy"--had been onto something.

In the fall of 2014, the FDA approved an immunotherapy drug known as Anti-PD1 for melanoma, the most serious type of skin cancer. Soon after, Anti-PD1 became the standard of care for melanoma. It's so effective, in fact, that it's used completely alone, without the need for chemotherapy or radiation. "I have not given chemotherapy to a person with melanoma for the past two years," says Dr. Antoni Ribas, a medical oncologist at UCLA who treats mainly melanoma patients. "The days of chemotherapy for these diseases are over."

Anti-PD1, like all immunotherapies, works by hacking your immune system--essentially, teaching it how to attack cancer cells, which it would otherwise ignore. There are huge advantages to immunotherapy compared with traditional cancer treatments. When patients undergo chemotherapy, the side effects are often debilitating, including extreme pain and fatigue, nausea, diarrhea, hair loss, poor appetite and a risk for life-threatening infections, as well as long-term health consequences like heart and lung disease. In addition, chemotherapy and radiation generally don't guarantee lasting protection from recurrence.

Immunotherapy, on the other hand, "would get the immune system to impact cancer long-term, because the immune system has the ability to remember," says Ribas. "So if you develop a therapy that turns on the immune system correctly, it will continue to remember that the bad guy is the tumor and should be attacked."

That's why the field of immunotherapy research has exploded in recent years. And one of the most promising areas of cancer immunotherapy goes all the way back to Coley: Controlled bacteria might be the best tool yet to turn the immune system into a cancer-fighting machine.

We know Salmonella bacteria as a sickening bug, lurking in undercooked meat or buckets of cookie dough and making its way into our system if we don't prepare our food properly. When it does, it wreaks havoc on us in the form of nausea, fever, diarrhea, vomiting and chills. But there's another side of Salmonella.

Roy Curtiss, a professor who runs a lab at the Arizona State University's Biodesign Institute has been studying the bacteria's cancer-killing properties for some time now. He's found that certain strains of Salmonella, when genetically modified to become safer, have the ability to enter cancer cells and take over. It's different from anti-PD1 therapy, where the immune system is taught to recognize cancer cells that were previously "hidden"--with Salmonella, the bacteria itself can exert its toxic effects on individual tumor cells. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

Programming Bacteria to Kill Cancer Cells; New Immunotherapy Research Holds Promises of Treating Cancer and Providing Long-Term Protection from Recurrence
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
  • Highlights & Notes
  • Citations
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.