Near-Roadway Air Pollution and Coronary Heart Disease: Burden of Disease and Potential Impact of a Greenhouse Gas Reduction Strategy in Southern California

By Ghosh, Rakesh; Lurmann, Frederick et al. | Environmental Health Perspectives, February 2016 | Go to article overview

Near-Roadway Air Pollution and Coronary Heart Disease: Burden of Disease and Potential Impact of a Greenhouse Gas Reduction Strategy in Southern California


Ghosh, Rakesh, Lurmann, Frederick, Perez, Laura, Penfold, Bryan, Brandt, Sylvia, Wilson, John, Milet, Meredith, Kunzli, Nino, McConnel, Rob, Environmental Health Perspectives


Introduction

Emerging evidence suggests a causal link between near-roadway air pollution (NRAP) and coronary heart disease (CHD) mortality and morbidity (Gan et al. 2010, 2011; Hoffmann et al. 2006; Kan et al. 2008). The 2010 American Heart Association scientific statement on ambient particles noted that NRAP "as a whole appears to be a specific source associated with cardiovascular risk" (Brook et al. 2010). Since then, additional longitudinal studies have demonstrated consistent associations between NRAP and CHD, using traffic density, proximity to roadways, and a near-roadway pollutant surrogate, elemental carbon (Gan et al. 2010, 2011; Kan et al. 2008). Although the specific pollutants in NRAP responsible for health effects are not entirely clear, evidence suggests that NRAP effects are independent of those of particulate matter < 2.5 [micro]m ([PM.sub.2.5]) (Hoffmann et al. 2006). However, in contrast to [PM.sub.2.5], there has been little examination of the NRAP-attributable disease burden. Furthermore, although regional PM levels have been declining in most of the United States over several decades (Motallebi et al. 2003) due to effective regulatory policy, some indicators of NRAP exposure such as vehicle miles traveled have increased markedly over the same period (U.S. Department of Transportation 2013). There is a need to assess the NRAP-attributable burden of disease.

We assessed the burden of CHD attributable to NRAP relative to [PM.sub.2.5] in Southern California, which has high regional [PM.sub.2.5] levels and a dense network of high-volume traffic corridors in close proximity to residences. We also estimated the CHD health co-benefits of California's landmark legislation (SB 375) to reduce greenhouse gas emissions (more than one-third of which come from cars and trucks) by 16% in 2035. The Southern California Association of Governments (SCAG) has developed a regional plan that aims to reduce per capita vehicle miles traveled, because this has substantial impact on greenhouse gas emissions (SCAG 2012a). This is to be accomplished with a land use development strategy designed to reduce the need for automobile travel by encouraging denser residential development in already developed urban areas that are served by public transport and by discouraging new development in currently undeveloped areas (SCAG 2012a). To support compact urban development conducive to walking and use of public transportation, transportation investment will focus on improving public transport by increasing service frequency and transit connections, and creating bicycle and pedestrian infrastructure. The California Air Resource Board's and the U.S. Environmental Protection Agency's (EPA) stricter vehicle exhaust emission standards, requirements for increased proportions of zero emission vehicles, and higher fuel economy standards are expected to substantially reduce future conventional and greenhouse gas emissions per mile of vehicle travel. We estimated the population exposure to NRAP and [PM.sub.2.5], which will be associated with implementation of these changes, and the corresponding pollution-attributable CHD.

Methods

Concentration--response functions. There are only a few studies of associations of CHD mortality and hospitalization with NRAP conducted in North America and therefore more likely to be relevant to Southern California than studies from other parts of the world. We used concentration-response functions (CRF) from studies of two surrogates of NRAP exposure: traffic density and residential proximity to a major road (Table 1). The traffic density CRF was based on a four-communities study in the Midwestern and Eastern United States (Kan et al. 2008). We used a CRF for residential elemental carbon (EC), based on black carbon, derived from an administrative data set covering the entire Vancouver, Canada, population (Gan et al. 2011). (For estimating EC-attributable burden of disease, black carbon was converted to EC, as described in the Supplemental Material, "Methods. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

Near-Roadway Air Pollution and Coronary Heart Disease: Burden of Disease and Potential Impact of a Greenhouse Gas Reduction Strategy in Southern California
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
  • Highlights & Notes
  • Citations
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.