The Magnetic Thickness of a Recent Submarine Lava Flow

By Tivey, Maurice A. | Oceanus, Spring-Summer 1998 | Go to article overview

The Magnetic Thickness of a Recent Submarine Lava Flow


Tivey, Maurice A., Oceanus


Submarine lava flows and their associated narrow feeder conduits known as dikes constitute the basic building blocks of the upper part of the ocean crust. We are only beginning to understand how lava erupts and forms on the seafloor by flooding topographic lows, flowing through channels or tubes, centralizing into volcanoes, or some combination of all of these. (See article on page 11 for a discussion of these volcanic processes.) The style of emplacement along with the extent and volume of individual lava flows and eruption rates are important parameters that help determine the initial properties of oceanic crust, its vertical and horizontal structure, and what processes control the magma supply to the crust.

Less than a handful of seafloor eruptions have ever been monitored in real time or near real time, so when a swarm of seismic events showed characteristics of an eruption off the west coast of the US in July 1993, the American science community mobilized to take advantage of this unique opportunity. The seismic activity was initially detected by seafloor sensors on the CoAxial ridge segment of the Juan de Fuca mid-ocean ridge system at 46 [degrees] 15 [minutes] N, 129 [degrees] 53 [inches] W, but then over a period of just two days the activity marched 40 kilometers north along a narrow band of the sea floor to center on 46 [degrees] 31.5 [minutes] N, 129 [degrees]35 [minutes] W, where activity finally dissipated after a few more days.

Research cruises sent to this latter site discovered a seafloor eruption had indeed occurred, forming a new lava flow up to 30 meters thick, 2,500 meters long, and 400 meters wide. To the north and south of the lava flow, a linear narrow fault-bounded valley, called a graben, was also discovered, oriented along the same trend as the lava flow. This narrow graben is the surface expression of the subsurface feeder conduit or dike zone that fed the lava to this eruption site from the magma chamber located some 40 kilometers to the south.

We were fortunate that the Juan de Fuca region had been mapped relatively recently with modern bathymetric systems and thus repeat bathymetric mapping after the CoAxial eruption allowed the pre-eruption topography to be subtracted from the post-eruption topography to obtain an estimate of the new lava flow's thickness. Pre-emption bathymetric surveys are not always available, however, which precludes using differential bathymetric mapping to determine lava flow thickness for many regions. One possible solution is to measure a property that is proportional to the volume of the new lava, such as its magnetic anomaly. Newly erupted lava is thought to be initially highly magnetized before it degrades to less magnetic minerals through seawater alteration. Highly magnetized lava thus should produce a distinctive magnetic signature relative to the older lava. Individual lava flows are typically thought to be on the order of a few tens of meters thick and a few kilometers long, requiring close-up, near-bottom magnetic surveys rather than distant surface surveys to obtain the requisite resolution for detecting such features. Magnetic surveys also offer some potential advantages over differential bathymetric mapping. Surface ship bathymetry has a relatively large footprint of 100 meters square and a limiting depth resolution of 5 to 15 meters, although near-bottom bathymetric mapping could improve on this resolution by an order of magnitude. Depending on the geometry and density of the magnetic survey tracks, near-bottom magnetic mapping could have both a small effective footprint and the ability to map flows thinner than 5 meters. The magnetic mapping method also has the advantage that it can be done after the lava flow has erupted and does not require pre-eruption surveys.

Six months after the eruption, in late 1993, we used the submersible Alvin to carry out an initial survey of the new floor and found that the new lava flow did indeed have a strong magnetic anomaly associated with it and that the anomaly could be directly attributed to the new lava. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

The Magnetic Thickness of a Recent Submarine Lava Flow
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
  • Highlights & Notes
  • Citations
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.