Nonvisually Guided Locomotion to a Previously Viewed Target in Real and Virtual Environments

By Witmer, Bob G.; Sadowski, Wallace J. | Human Factors, September 1998 | Go to article overview

Nonvisually Guided Locomotion to a Previously Viewed Target in Real and Virtual Environments


Witmer, Bob G., Sadowski, Wallace J., Human Factors


INTRODUCTION

Virtual environments (VEs) and their interfaces typically are designed to recreate some of the sensations and experiences that characterize real-world environments. The success of this endeavor has been limited by both the available technologies and a lack of information regarding what users need in order to perceive and perform in VEs as they do in real environments. Although technologies for providing spatialized audio, force, and tactile feedback and stereoscopic visuals exist, they do not provide an experience that is indistinguishable from reality (Stuart, 1996). In fact, VE experiences are often so different from real-world experiences that even brief VE exposures can produce eyestrain, nausea, and disorientation (Bailey & Witmer, 1994). To examine the behavioral consequences of differences between VEs and real-world environments, controlled experiments comparing performance in the two environments are required. It is important to link the impairment of VE performance to the technological deficiencies responsible for that impairment. The degree to which transfer of training is affected is also a critical issue.

The ability to judge distance accurately is essential to many real-world tasks, including navigation, aiming, and shooting. Direct comparisons of verbal distance estimates in VEs and real environments suggest that observers are less accurate in estimating distance in VEs than in the real world (Lampton, Singer, McDonald, & Bliss, 1995; Witmer & Kline, 1997). Using viewing distances from 3 to 33 m, Witmer and Kline (1997) found that real-world estimates averaged about 75% of the true distance, whereas VE estimates averaged only 50%. Wright (1995) reported that underestimates in VEs ranged from 41% to 72% of the true distances, whereas real-world estimates generally averaged 87% to 91% of the true distances. The relatively poor VE performances reported are probably not the result of using low-end VE display devices, as two of the three experiments employed wide field of view (FOV), high-resolution display devices.

In real-world settings, research has shown that distance judgments can be quite accurate when participants are asked to first view an object and then walk to it without further visual guidance (Elliott, 1987; Laurent & Thomson, 1988; Rieser, Ashmead, Talor, & Youngquist, 1990; Steenhuis & Goodale, 1988; Thomson, 1983). This nonvisually guided locomotion (NVGL) procedure yielded relative errors that were 2% to 8% of the true distances at viewing distances up to 22 m. Rieser et al. (1990) concluded that accurate walking without vision to previously seen targets indicates that efferent or proprioceptive information about locomotion is closely calibrated to visually perceived distance. Unlike verbal distance estimates, which depend on one's concept of what constitutes a foot or a meter, NVGL appears to provide an accurate, unbiased measure of perceived distance. If an environment (e.g., a VE) distorts perceived distance, however, then NVGL should accurately reflect those distortions.

Thomson (1983) conducted the prototypical study of NVGL. Participants viewed a target for 5 s and then, with their eyes closed and their hearing masked, walked distances of 3 to 21 m, stopping when they believed they had reached the target. Distance judgments were within 24 cm of the target for 84% of all walks up to the 9-m mark. However, errors increased sharply to 150 cm or more between 12 m and 18 m. Thomson attributed the sharp drop in performance to the inability to hold spatial knowledge in short-term memory long enough to cover the longer distances. To test this notion, Thomson introduced variable delays between visual obscuration and beginning to walk, finding support for his hypothesis. However, several replication attempts (Elliott, 1986, 1987; Rieser et al., 1990; Steenhuis & Goodale, 1988) did not support Thomson's hypothesis, but all found that variable error increased linearly with distance. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Nonvisually Guided Locomotion to a Previously Viewed Target in Real and Virtual Environments
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.