Experimenting with 40 Trillion Electron-Volts: It Takes Hundred of Physicists Several Years to Design Experimental Detectors for the Superconducting Super Collider

By Thomsen, Dietrick E. | Science News, November 14, 1987 | Go to article overview

Experimenting with 40 Trillion Electron-Volts: It Takes Hundred of Physicists Several Years to Design Experimental Detectors for the Superconducting Super Collider


Thomsen, Dietrick E., Science News


Experimenting With 40 Trillion Electron-Volts

With much of the emphasis recently on the competition among 25 states to be the site of the proposed Superconducting Super Collider (SN: 9/12/87, p. 167), the ambitious physics of the project tends to get lost. But to anyone involved in particle physics, the SSC involves a fantastic amount of energy, and physicists' eyes tend to gleam as they talk about what they will do with it--or rather, what nature will do with it while they watch. Each head-on collision of two protons in the SSC would provide 40 trillion electron-volts (40 GeV) of energy. That's 40,000 times the mass of a proton.

For several years now, particle physicists have gathered for a couple of weeks each summer to work out their ideas on how to design the equipment that will record the results of those collisions, and gradually the designs are beginning to jell. This year's Workshop on Experiments, Detectors and Experimental Areas for the Super Collider, held at the University of California at Berkeley, produced drawings of large pieces of experimental equipment that seem to be settling into basic categories.

The installations the experimenters discuss are large and complicated. As Roger Cashmore of the Fermi National Accelerator Laboratory in Batavia, Ill., points out, it takes about five years to build one of these detectors. If construction of the SSC goes forward on schedule, completion is expected in 1996. Therefore, in a couple of years physicists will have to develop these concepts into plans out of which hardware can be made.

They are not there yet, but scientists are standing at blackboards drawing up arrangements of different elements they think they need. As they do, they get sardonic comments from the audience:

"Amazing,' says one observer, "how they plan to levitate a heavy magnet like that!'

"They intend it to be superconducting,' says another, pushing in the needle a little farther.

Yes, they intend it to be superconducting, but no, they do not intend to levitate many tons of magnet by the Meissner effect. (A piece of metal in a superconducting state will expel a magnetic field from within itself. As has been demonstrated recently in television news reports of the new high-temperature super-conductors, the repulsion so generated will levitate a small object.) As Cashmore points out, "These things don't just float in midair.' There is a lot of engineering design to be done, and that could require tradeoffs with characteristics important to the data-taking. Particularly, the supports for heavy items like magnets could invade and degrade the hermeticity, the self-contained and sealed-off character, that experimental physicists desire in elements of the detecting equipment.

The physicists want the detectors to be able to identify the stable and the fairly long-lived radioactive particles that come out of the proton-proton collisions and determine the energies they carry and the size and direction of their momenta. Most of the unknown particles they seek will be too short-lived to make much direct impression on the detectors, so the presence of any of them will be revealed by the identity and behavior of its decay products. The name of the game is by their fruits shall ye know them.

The list of things they want to look for is fairly long. All these things are apparently heavier than particles now known and so require more energy for their production. Some of the things on the list would contribute to a rounding out and deeper understanding of the present "standard model,' which contains successful theories of two important parts of particle physics. Others pertain to attempts to go beyond the standard model to unite its elements with explanations of phenomena not now included and produce a more comprehensive theory. Finally, some theoretical exercises seek to go below the standard model to see whether there is a level of reality and structure below the most basic one now contemplated by the standard model. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Experimenting with 40 Trillion Electron-Volts: It Takes Hundred of Physicists Several Years to Design Experimental Detectors for the Superconducting Super Collider
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.