The "New" Genetics and Mammalian Cloning in Environmental Health Research

By Iannaccone, Philip M. | Environmental Health Perspectives, October 2000 | Go to article overview

The "New" Genetics and Mammalian Cloning in Environmental Health Research


Iannaccone, Philip M., Environmental Health Perspectives


Recent advances in genetic technology have spurred a mini-revolution in the study of toxicology. Toxicologic studies are a national imperative, and the importance of the application of transgenic mice and knock-out technologies to these studies is widely recognized. For example, the use of Tg.AC transgenic mice, carrying an inducible v-H-ras gene, and p53+/-mice speeds the outcomes of the traditional 2-year bioassay of chemicals nominated for study (1-8). Mechanistic studies have been greatly enhanced by Big Blue transgenic animals that allow "shuttle" mutagenesis studies (9-11).

These genetic approaches have enhanced our knowledge of mechanisms that are important to molecular toxicology as well. By knocking out gamma-glutamyl transpeptidase, the paradoxical reduction of intracellular glutathione was found to be associated with the accumulation of DNA damage (12). Mechanistic roles for repair enzyme genes in toxocologic damage have been revealed with this technology. For example, mouse models of xeroderma pigmentosa produced by creating null mutations of xpc gene prove the critical function nucleotide excision repair by the xpc system in ultraviolet radiation-induced damage leading to skin cancer (13). By combining mutations, the overlapping roles of p53 (Trp53) and xpc, as well as base excision repair and mismatch repair, were revealed (14).

Similarly, this approach established the role of [Beta]-pol in long patch repair and established that the failure of this repair system can lead to chromosomal breakage and apoptosis (15,16). [Beta]-pol null cells were used to show that removal of 5'-deoxyribose phosphate moiety from DNA is a key step in base excision repair (17). The promise now is that knock-out technology, particularly combined with widespread application of gene array studies, will enhance the Environmental Genome Project goal of establishing mechanisms of gene-environment interaction (18).

The application of these technologies through model systems (fruitfly and Caenorhabditis elegans) that establish "the usual suspect" genes by sequence similarities was recently boosted with the completion of both the Drosophila and C. elegans genome projects (19). These projects revealed a surprising level of sequence conservation to the human. In the case of Drosophila, sequence homology to humans is estimated to be approximately 50%, and [is greater than] 60% of a subset of human disease genes (68% of human cancer genes) had orthologs in the Drosophila annotated genome. We know this conservation extends to important aspects of complete pathways as well, such as the Sonic hedgehog-Patched-GLI pathway (20).

The ability to take information from the model system to functional gene study with gain of function (e.g., transgenic) and loss of function (e.g., knock-out) mutations in analogous experimental systems such as the mouse is extremely powerful because of the genetic information available in mouse strains. It is important to remember that complete exploitation of this approach requires careful phenotypic analysis, which is often not available or difficult to obtain in the mouse.

Much of these data are already available or easily obtainable in the rat, however. Using the rat, physiologic and pathophysiologic data for common diseases and metabolic pathways have been gathered for nearly a century from models of diseases that are important to the national public health. Often the rat model most closely resembles the human from among acceptable experimental systems. Important rat models of human diseases include those for cardiovascular diseases, neurodegenerative diseases, behavioral disorders, metabolic disorders, and carcinogenesis, all of which have important environmental overlays that are often poorly understood at the mechanistic level (21,22).

The genomic resources for using rat models of human disease conditions are robust and growing rapidly (23,24). Particularly important in this regard is the recent announcement that the rat genome will be sequenced. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

The "New" Genetics and Mammalian Cloning in Environmental Health Research
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.