Location-Specific Cumulative Distribution Function (LSCDF): An Alternative to Spatial Correlation Analysis

By Wong, David W. S. | Geographical Analysis, January 2001 | Go to article overview

Location-Specific Cumulative Distribution Function (LSCDF): An Alternative to Spatial Correlation Analysis


Wong, David W. S., Geographical Analysis


Quite often, geographical analysis involves comparing the spatial distributions of two variables or attributes. A typical method is to calculate the correlation coefficient of the two variables for corresponding areal units. Putting aside the fact that correlation coefficient is aspatial in nature (swapping attribute values between spatial units will not alter the value of correlation coefficient) and the issue of spatial dependency (or the potential existence of spatial autocorrelation) among observations, another major problem with using correlation measures for analyzing spatial data is the modifiable areal unit problem (MAUP), especially with the scale effect. Results from correlation analysis vary with the spatial resolutions based upon which spatial data are gathered. This paper presents an approach for spatial correlation analysis for count variables by comparing their cumulative spatial distributions. Using the concept of cumulative distribution function (CDF) in classical statistics, this paper shows that location-specific CDF (LSCDF) and its associated K-S-like statistic, which indicate the magnitude of difference between the two spatial distributions, are highly consistent over different levels of spatial scale. The application of the LSCDF approach is not restricted to isotropic spatial processes and the statistic provides a rather conservative conclusion. In addition, given any origin to construct LSCDFs, the LSCDFs can provide a geographic description of the two spatial distributions. By combining LSCDFs derived from different origins, a comprehensive understanding of the two distributions for the entire study area is developed. This approach for correlation analysis may offer a direction for future investigation of the MAUP.

One of the central themes in geographical analysis is to compare and evaluate the spatial distributions of different phenomena or variables in order to determine if the two phenomena or variables are related to each other. In the physical environment, one may be interested in how the spatial pattern of soil fertility level affects the amount of crop yield in different locations, or how the soil characteristics affect vegetative covers for different regions. In urban analysis, one may be interested if there is an association between income level and the level of education attainment in different parts of the city. In segregation study, the issue quite often is reduced to compare the spatial distribution patterns of different ethnic or racial groups to determine if their distributions resemble each other. A common approach to answer these questions is to conduct a correlation analysis in addition to a few other less common methods (Unwin 1981).

Correlation analysis has been accepted extensively among geographers and geoscientists such that its validity is not often questioned. This type of analysis treats spatial data as aspatial data. Correlation analysis, however, has to adhere to the assumptions in classical statistics, and one of those assumptions is the independence of observations. Observations in spatial data frequently violate this assumption of independence (Anselin and Griffith 1988) because geographical data are probably spatially autocorrelated to a certain degree. A related issue is that a correlation coefficient is not a spatial measure. Swapping attribute values between areal units will not change the correlation level although the spatial patterns of attributes could be completely different (Goodchild 1992). Putting aside these issues, another limitation of correlation analysis is that the results are sensitive to the spatial scale upon which the data are gathered and tabulated. When correlation analysis and many other analytical too ls are used on data gathered at different levels of spatial resolution, the results are probably inconsistent over scales. This is the so-called scale effect under the umbrella of the modifiable areal unit problem (MAUP). For instance, using the 1990 census data of the United States, the correlation coefficient of white and black population counts by states is 0. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • A full archive of books and articles related to this one
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Location-Specific Cumulative Distribution Function (LSCDF): An Alternative to Spatial Correlation Analysis
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

    Already a member? Log in now.