The Air That's Up There: Atmospheric Scientists Focus on Nature's Role. (Cover Story)

By Gorman, Jessica | Science News, June 1, 2002 | Go to article overview

The Air That's Up There: Atmospheric Scientists Focus on Nature's Role. (Cover Story)


Gorman, Jessica, Science News


The atmosphere is a tough laboratory. On a bench top, chemists can devise and carry out controlled experiments. But chemistry isn't so straightforward outdoors. Natural and humanmade chemicals from countless sources enter the air and react--again and again. Atmospheric scientists are continuously working to untangle the complicated interactions. It's often still unclear precisely what chemicals are present in the atmosphere, how they got there, what they're doing, or where they're going.

Complicating matters is nature--specifically, plants. Although the casual hiker doesn't see it, trees, underbrush, and even dead leaves can emit gases that mix with pollutants above a forest canopy and form new compounds. More than 20 years ago, President Ronald Reagan took much heat for blaming killer trees for pollution. But while tree emissions alone aren't responsible for killing anyone, they can react with humanmade compounds to make chemicals that further pollute the air or contribute to climate change.

In recent research, atmospheric scientists have been filling in holes in their basic knowledge about the ways that nature affects the chemistry of the atmosphere. The forest's gaseous influence doesn't stop at its boundaries--the reaction of naturally produced chemicals with humanmade pollutants can influence air quality far downwind. Moreover, many scientists say, human influences on the atmosphere can't be fully understood unless the natural influences, such as tree emissions, are carefully calculated.

The research is fundamental, but its implications could be wide-ranging. It could help scientists understand the fate of airborne chemicals. "Are they going to stay in the atmosphere and continue to react?" asks Chris Geron of the United States Environmental Protection Agency in Research Triangle Park, N.C. "Are they going to travel far? Are they going to form some other compound that will react under different light and temperature?"

Obtaining those answers, in turn, can drive decisions about how to regulate industrial and automobile emissions. The knowledge being gathered helps scientists improve their computer models of weather and pollution patterns.

"The more you understand about the chemistry," says Geron, "the more you can tune your models and understand what's going on in the atmosphere."

Such models already play various roles, from informing people of impending smog conditions to guiding multimillion-dollar decisions on how governments regulate industrial emissions. "There's definitely a multitude of questions and areas of research that we can work in to improve the models," Geron says.

MYSTERY GASES Detailed air analysis is necessary in both urban areas, where people typically think about smog, and forested regions. Although it might look pristine, forest air is often infiltrated by humanmade pollutants, such as nitrogen oxides from cars on nearby roads or distant power plants. When these pollutants mix with a variety of natural chemicals spewed by trees, they form new chemicals--including some that researchers haven't yet identified.

By discovering exactly which pollutants are in the air, scientists can better determine where chemicals will end up, what reactions created them, and how to prevent the pollutants from forming in the first place.

Air-analysis instruments generally available today can't simultaneously and sensitively identify all the individual nitrogen-containing chemicals. Recently, atmospheric scientist Ron Cohen and his colleagues at the University of California, Berkeley invented a new device that simultaneously measures concentrations of several classes of nitrogen-containing air pollutants.

Cohen's instrument, described in the March Journal of Geophysical Research-Atmospheres, takes advantage of the fact that various nitrogen-based compounds break down into nitrogen dioxide at different temperatures. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

The Air That's Up There: Atmospheric Scientists Focus on Nature's Role. (Cover Story)
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.