Rock and Roll Bridge: A New Analysis Challenges the Common Explanation for a Famous Collapse

By Peterson, Ivars | Science News, June 2, 1990 | Go to article overview

Rock and Roll Bridge: A New Analysis Challenges the Common Explanation for a Famous Collapse


Peterson, Ivars, Science News


Rock and Roll Bridge

Startling scenes of rippling pavement, featured in a classic film that captured the 1940 destruction of the Tacoma Narrows suspension bridge in Washington state, rank among the most dramatic and widely known images in science and engineering. This old film, a staple of most elementary physics courses, has left an indelible impression on countless students over the years.

Many of those students also remember the standard explanation for the disaster. Both textbooks and instructors usually attribute the bridge's collapse to the phenomenon of resonance. Like a mass hanging from a spring, a suspension bridge oscillates at a natural frequency. In the case of the Tacoma Narrows brdige, so the explanation goes, the wind blowing past the bridge generated a train of vortices that produced a fluctuating force in tune with the bridge's natural frequency, steadily increasing the amplitude of its oscillations until the bridge finally failed.

"This explanation has enormous appeal in the mathematical and scientific community," observes applied mathematician P. Joseph McKenna of the University of Connecticut in Storrs. "It is plausible, remarkably easy to understand, and makes a nice example in a differential-equations class."

But the explanation is flawed, he says.

Resonance is actually a very precise phenomenon. Anyone who has seen sound waves shatter glass knows how closely the forcing frequency must match an object's natural frequency. It's hard to imagine that such precise, steady conditions existed during the powerful storm that hit the bridge, McKenna says.

Furthermore, the structure displayed a number of different types of oscillations. Initially, its roadway merely undulated vertically. Then the bridge abruptly switched its oscillation mode, and the roadway started to twist. It was this extreme twisting that actually led to the bridge's demise.

Indeed, even the 1941 report of the commission that investigated the disaster concludes: "It is very improbable that resonance with alternating vortices plays an important role in the oscillations of suspension bridges."

If simple resonance doesn't explain the Tacoma Narrows destruction, what does? Fascinated by that question, McKenna and Alan C. Lazer of the University of Miami in Coral Gables, Fla., have spent the last six years developing an alternative mathematical model that may help elucidate the catastrophic collapse.

"What distinguishes suspension bridges, we claim, is their fundamental nonlinearity," Lazer and McKenna state in a paper to appear in a forthcoming SIAM REVIEW.

Linear differential equations, such as those typically used by engineers to model the behavior of structures such as bridges, embody the idea that a small force leads to a small effect and a large force leads to a large effect. Nonlinear differential equations, such as those studied by Lazer and McKenna, have more complicated solutions. Often, a small force can lead to either a small effect or a large effect. And exactly what happens in a given situation may be quite unpredictable.

Lazer and McKenna say their new theory provides key insights into why suspension bridges oscillate the way they do. It applies not only to the Tacoma Narrows bridge and San Francisco's Golden Gate bridge--which may be prone to large-scale, potentially destructive oscillations during earthquakes -- but also to large, glexible structures, such as space stations, giant space-based robot arms and certain types of ships. The theory even suggests ways of constructing extremely light, flexible bridges that won't oscillate wildly.

Suspension bridges have a long history of large-scale oscillations and catastrophic failure under high and even moderate winds. The earliest recorded problem involved a 260-foot-long footbridge constructed in 1817 across the River Tweed in Scotland. A gale destroyed that bridge six months after its completion. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Rock and Roll Bridge: A New Analysis Challenges the Common Explanation for a Famous Collapse
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.