Pocket Sockets: Tiny Fuel Cells for Portable Electronics Have Arrived, Almost

By Weiss, Peter Ulrich | Science News, September 7, 2002 | Go to article overview

Pocket Sockets: Tiny Fuel Cells for Portable Electronics Have Arrived, Almost


Weiss, Peter Ulrich, Science News


At Germany's weeklong Hannover Fair last April, a camcorder monitored the crowds visiting the energy-exhibits section of the giant technology trade show. The device had no battery nor was it plugged into the wall. Instead, the palmsize camera got its power from a prototype fuel cell that transformed hydrogen gas and oxygen into water and electricity. The unusually compact fuel cell was "pretty reliable," though not dependable enough to keep the camera running continuously, says Christopher Hebling of the Fraunhofer Institute for Solar Energy Systems in Freiburg, Germany, the alternative-energy laboratory that built the fuel cell.

In the same vast exhibit hall were examples of much larger fuel cells for cars, homes, and even factories (SN: 11/19/93,p. 314). Despite growing interest in such alternative energy sources, the introduction of fuel cells in those realms remains an uphill battle. Although clean and efficient, these systems, which have been under development for decades, remain expensive.

On the other hand, say technology analysts, if reliable fuel cells as small as the one in the camcorder--and smaller--could be mass-produced, consumers would snap them up. Users of cell phones, laptop computers, and other portable electronics are frustrated with having to recharge batteries every few hours, says Atakan Ozbek of Allied Business Intelligence in Oyster Bay, N.Y.

Fuel cells as small as a few centimeters across--known as micro fuel cells--could last 10 or more hours and be refueled in seconds, their promoters say. For personal electronics, "people ... desperately need the product," says Robert K. Lifton of New York City-based fuel cell developer Medis Technologies.

Ozbek expects sales of the little power plants to reach 200 million units per year by 2008, at a price of $30 to $50 apiece.

That potential market is stimulating a broad range of efforts to develop micro fuel cells. Furthest along are so-called direct-methanol fuel cells, which have evolved from research funded by the Defense Advanced Research Projects Agency in the late 1980s and early 1990s. Today, several developers of these fuel cells are promising to roll out their first products--most likely, battery chargers--within the next year or so.

Nevertheless, direct-methanol fuel cells remain rife with problems ranging from getting flooded to drying out, and they produce uneven electrical output. "It's a complicated system," says Shimshon Gottesfeld of MTI MicroFuel Cells in Albany, N.Y.

Keenly aware of such shortcomings, many researchers are pursuing alternatives--some with surprising features. These include butane fuel cells with components that get scorching hot and a fuel cell that runs on an ingredient found in honey and beer.

GIVE IT SOME JUICE Today's typical fuel cell, which can be as a big as a house, contains multiple electricity-generating units that are stacked like pancakes. Each of those units consists of two flat, metallic electrodes that sandwich a layer of electrolyte. The electrolyte layer, which can be liquid or solid, acts as a membrane allowing ions but not electrons to pass. This creates a voltage.

Although superficially similar to a battery, a fuel cell gets its energy in a different way. In a battery, chemical reactions produce current and consume the electrodes. In a fuel cell, however, chemical reactions consume fuel that comes from outside the cell, and the electrodes act only as catalysts for those reactions.

In general, fuel cells take in hydrogen and oxygen and convert them into water and electricity. However, sometimes the hydrogen is generated directly within the cell from another fuel, such as methanol.

At one electrode, the anode, molecules of hydrogen gas break down into electrons and positively charged hydrogen ions. Those ions--protons--then migrate through the electrolyte to the other electrode, the cathode. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Pocket Sockets: Tiny Fuel Cells for Portable Electronics Have Arrived, Almost
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.