Star Hurtling through Space near Humongous Black Hole Could Prove Einstein's Theory

By Jesse Emspak Space. com | The Christian Science Monitor, October 4, 2012 | Go to article overview

Star Hurtling through Space near Humongous Black Hole Could Prove Einstein's Theory


Jesse Emspak Space. com, The Christian Science Monitor


Astronomers have found a star that breaks speed records as it orbits the Milky Way's central black hole, covering 3,100 miles (5,000 kilometers) per second as it whips around the black hole in less than a dozen years.

The discovery offers scientists a unique chance within the decade to test Einstein's theory of relativity in an extreme environment.

The star is named S0-102. It's one of a class of "S-stars" that surround the center of the sun's home galaxy in a kind of spherical shell. It has an orbital period of 11.5 years, give or take 3 1/2 months, making it the shortest-period star ever found in the region. The previous record was set by S0-2, which has a 16-year period.

The presence of two short-period stars means astronomers can look at the precession (change in orientation) of their orbits over time and use that information to learn how much space has been curved by the immense gravity of the galaxy's central black hole, which weighs in at 4 million times the sun's mass.

Such tests have been done before. The most famous study looked at the movement of the planet Mercury around the sun. Astronomers of the 19th century noticed Mercury's orbit was precessing more than could be accounted for by Newton's theory of gravity. At first they proposed the presence of another planet inside Mercury's orbit, but in the early 20th centuryEinstein was able to use his theory of relativity to predict exactly how much "extra" precession should happen as a result of space being curved by the sun's gravity, forcing the planet into a different path. [Photos: Black Holes of the Universe]

Other similar observations have been made of pairs of dense objects called neutron stars. However, because these stars can be only up to three times as massive as the sun, they don't curve space- time much more than the warping scientists see in the solar neighborhood.

Thus, studying the space-time around the Milky Way's gigantic black hole should offer an unprecedented test.

"This is the same idea in an unexplored parameter space," said Andrea Ghez, a professor of astronomy at the University of California, Los Angeles, and one of the leaders of the research team that found S0-102. "We know relativity breaks down on a small scale. We want to get as close to the event horizon as possible."

The event horizon around a black hole is the point of no return the closest anything can come without falling in.

The stars S0-102 and S0-2 appear to get fairly close. Their orbits are so near the central black hole that the effects of space- time curvature should be clearly visible. And the presence of these two short-period stars will allow observers to measure the local space-time curvature far more accurately than one star would.

The duo also helps astronomers take into account the fact that the gravitational mass of the central black hole isn't a perfect point; there are lots of other objects, such as remnants of dead stars, in the region that can cloud the observations. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

Star Hurtling through Space near Humongous Black Hole Could Prove Einstein's Theory
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
  • Highlights & Notes
  • Citations
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.