Down the Hatch Tissue-Engineering Procedure to Save the Esophagus Feeds Effort to Build Human Organs

By Templeton, David | Pittsburgh Post-Gazette (Pittsburgh, PA), August 6, 2012 | Go to article overview

Down the Hatch Tissue-Engineering Procedure to Save the Esophagus Feeds Effort to Build Human Organs


Templeton, David, Pittsburgh Post-Gazette (Pittsburgh, PA)


Mike Wright's new esophagus continues to work like "a newborn baby's" -- his way of describing the organ he came within weeks of losing in 2010.

The 56-year-old Columbus, Ohio, man -- the world's second to undergo experimental esophagus-replacement surgery in Pittsburgh, his occurring in January 2010 -- remains the biggest cheerleader for the still-experimental surgery soon to be tested in a human clinical trial.

Blair Jobe, a West Penn Allegheny Health Systems surgeon formerly with the University of Pittsburgh Medical Center, is scheduling the clinical trial to begin in September and involving as many as 40 patients who have Barrett's disease with dysplasia (abnormal cell growth) or early-stage esophageal cancer.

The trial will test whether regrowth of the esophagus lining, as occurred with Mr. Wright, produces better results than the current practice of removing the entire esophagus to treat esophageal cancer, then creating a makeshift esophagus with a portion of the stomach. This highly invasive procedure, known as esophagectomy, is the mainstay of therapy for the majority of esophageal cancers and results in a 50-percent complication rate and a long-term quality of life issue, Dr. Jobe said.

Dr. Jobe's success in treating six patients to date without failure represents the latest advance in pioneering tissue- engineering research done at the University of Pittsburgh and UPMC's McGowan Institute for Regenerative Medicine. The current line of research began with the development of two-dimensional tissue replacement, including tubes or tracts and skin, with efforts now under way to replace tendons. The research is progressing to creating whole human organs.

Dr. Jobe said the replacement of esophageal linings in six patients represents "proof of principle for this approach, and we must now validate the results in a clinical trial in order to responsibly introduce this technique into clinical practice." He said there is still a problem of strictures, or a narrowing of the "food tube," in places after the lining restores itself. "But the strictures were stretched open with an outpatient procedure."

It's an issue to be addressed in the clinical trial.

The efforts of Dr. Jobe and the McGowan Institute reflect a worldwide trend in using tissue engineering to treat disease and repair damage. To date, 10 successful procedures to generate functional new tissue to repair tracheas have been reported, while eight patients have received new tissue-engineered bladders. Doctors still must study the patient outcomes, particularly if the procedures were done on a large scale, Dr. Jobe said.

Stephen Badylak, deputy director of the McGowan Institute and noted worldwide for his research in tissue engineering, developed the esophagus-replacement strategy and led research in removing cells from pig tissue to create a scaffolding that can regenerate damaged tissue. The scaffolding material, now available commercially, has been used 3 million times worldwide to repair linings, wounds and skin, with efforts under way to repair tendons.

It's the basis of the esophagus-replacement process. With six successes to date, Dr. Badylak said, "We're batting a thousand, but the numbers are still very low and further studies are definitely warranted." The scaffolding is a key element in research to create new human organs.

Evolution did the hard work of tissue engineering with its method of signalling stem cells to create the needed tissue, Dr. Badylak said. "We have realized the ideal scaffolding during 100 million years of evolution. The hardest part was done by Mother Nature."

The scaffolding is "extracellular matrix," or ECM -- a matrix or tissue framework developed from pig tissue from which all the pig's cells have been removed. The ECM naturally contains growth factors and proteins among other molecules that appear to signal the recipient's adult stem cells, and possibly other cells, to transform themselves into site-specific cells needed at that particular location of the body. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Down the Hatch Tissue-Engineering Procedure to Save the Esophagus Feeds Effort to Build Human Organs
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.