Google Fights Spam with Artificial Intelligence

By Starr, Graham | The Christian Science Monitor, July 13, 2015 | Go to article overview

Google Fights Spam with Artificial Intelligence


Starr, Graham, The Christian Science Monitor


The robot wars will be won by spambots, unless Google engineers have anything to say about it.

The company announced in its Gmail blog on Thursday that it has been using Google's artificial neural network to help with e-mail spam filtering. Already, the company says that it's been able to block 99.9 percent of spam from reaching inboxes, while incorrectly classifying legitimate e-mail as spam only 0.05 percent of the time.

And it's all thanks to data collection.

For the most part, Google's system is based on Gmail's "report spam" and "not spam" buttons. By taking this user input and referencing other user actions, the Internet giant can learn what counts as spam and what doesn't. For e-mails that were sent with maliciousness intent, the server can learn, parse, and redirect from the inbox.

But spam can still make it past blockers through a variety of ways, the company says. Often, spam succeeds by using previously unaccounted domains (new ones such as .xyz or .horse can get past filters) or by mimicking desired e-mails (or "ham"). Despite new filters, spammers find ways to circumvent them.

Though we may not have completely eradicated spam as computer scientists had thought we would, Internet companies have been able to at least limit its pervasiveness.

The remaining problem lies not in detecting which e-mails are junk. "Blacklisting is an efficient anti-spam mechanism, but is becoming more and more prone to false positives," reads a paper from MIT's Spam Conference 2010, which brought experts together to discuss the future of spam detection. Often times, the "coarse granularity" of blacklists sweep non-malicious addresses into the junk bin, the report says.

And even with whitelists, or lists of approved online addresses, the report asserts that services are just using heuristics to curb spam rather than addressing any computational approach.

So Google is using its "neural network" - a series of learning supercomputers designed to "think" and identify imagery - to detect spam and help close that remaining tenth of a percent of error.

This type of artificial intelligence is grown from a type of machine learning known as "deep learning." These types of neural networks attempt to mimic higher-level thought and abstraction, and many see it as one of the roots for development of artificial intelligence.

Google thinks this can stop junk. Instead of utilizing white- or blacklists to identify spam or ham e-mails, its neural network can use natural-language processing and information from other users to draw conclusions about the messages being analyzed. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

Google Fights Spam with Artificial Intelligence
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
  • Highlights & Notes
  • Citations
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.