Effects of the Orientation of Moving Objects on the Perception of Streaming/bouncing Motion Displays

By Kawabe, Takahiro; Miura, Kayo | Perception and Psychophysics, July 2006 | Go to article overview

Effects of the Orientation of Moving Objects on the Perception of Streaming/bouncing Motion Displays


Kawabe, Takahiro, Miura, Kayo, Perception and Psychophysics


In this study, we examined the contribution of the orientation of moving objects to perception of a streaming/bouncing motion display. In three experiments, participants reported which of the two types of motion, streaming or bouncing, they perceived. The following independent variables were used: orientation differences between Gabor micropattems (Gabors) and their path of motion (all the experiments) and the presence/absence of a transient tone (Experiment 1), transient visual flash (Experiment 2), or concurrent secondary task (Experiment 3) at the coincidence of Gabors. The results showed that the events at coincidence generally biased responses toward the perception of bouncing. On the other hand, alignment of Gabors with their motion axes significantly reduced the frequency of bounce perception. The results also indicated that an object whose orientation was parallel to its motion path strengthened the spatiotemporal integration of local motion signals along a straight motion path, resulting in the perception of streaming. We suggest that the effect of collinearity between Gabors and their motion path is relatively free from the effect of attention distraction.

A fundamental task of the perceptual system is to spatially and temporally identify external objects. In other words, it is necessary for the perceptual system to discriminate which objects in a present scene correspond to objects in the next scene. So far, research has suggested that dynamic changes in visual objects are detected by several visual mechanisms, such as low-level motion sensors (Adelson & Bergen, 1985; Lu & Sperling, 2001), attentive tracking (Cavanagh, 1992; Pylyshyn & Storm, 1988; Verstraten, Cavanagh, & Labianca, 2000), and spatiotemporal integration of moving objects (Alais & Lorenceau, 2002; Gepshtein & Kubovy, 2000).

The visual ability to identify objects in space and time has been assessed by examining perception, using ambiguous, bistable motion displays, a good example of which is a streaming/bouncing motion display in which two identical objects move toward each other, coincide, and then move away from each other. In this display, either of two types of motion is perceived; streaming, where each object continues to move along its own trajectory, or bouncing, where the two objects change trajectories as though colliding with each other at the point of coincidence (Bertenthal, Banton, & Bradbury, 1993; Goldberg & Pomerantz, 1982; Sumi, 1995). In general, streaming motion is dominantly perceived, perhaps because local motion integration through temporal motion recruitment occurs more easily along the same trajectory than between different trajectories (Anstis & Ramachandran, 1986; Watamaniuk, McKee, & Grzywacz, 1995).

Previous studies have reported that auditory signals can alter visual perception of streaming/bouncing displays. Sekuler, Sekuler, and Lau (1997) found that the perception of bouncing became dominant when a transient sound was presented at the coincidence of moving objects (hereafter, we will simply refer to this as at coincidence). They suggested that auditory signals at coincidence might be utilized to interpret an ambiguous streaming/bouncing display when combined with a visual signal; their results have been replicated and supported in later studies (Bushara et al., 2003; Scheier, Lewkowicz, & Shimojo, 2003; Watanabe & Shimojo, 200Ia, 200Ib). Recently, Shimojo et al. (2001) suggested that multimodal attention might be involved in the perception of streaming/bouncing displays; multimodal transient signals, such as auditory tones and tactile vibrations, at coincidence reliably increased the perception of bouncing. It seems that a deprivation of the attentional resources to be allocated to vision might interfere with the recruitment of local motion signals along a straight motion path.

In line with the findings above, it has been suggested that bouncing is dominantly perceived when observers track moving objects with insufficient visual attentional resources. …

The rest of this article is only available to active members of Questia

Sign up now for a free, 1-day trial and receive full access to:

  • Questia's entire collection
  • Automatic bibliography creation
  • More helpful research tools like notes, citations, and highlights
  • A full archive of books and articles related to this one
  • Ad-free environment

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Effects of the Orientation of Moving Objects on the Perception of Streaming/bouncing Motion Displays
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Sign up now to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    For full access in an ad-free environment, sign up now for a FREE, 1-day trial.

    Already a member? Log in now.