Large-Scale Gene Expression Differences across Brain Regions and Inbred Strains Correlate with a Behavioral Phenotype

By Nadler, Jessica J.; Zou, Fei et al. | Genetics, November 2006 | Go to article overview

Large-Scale Gene Expression Differences across Brain Regions and Inbred Strains Correlate with a Behavioral Phenotype


Nadler, Jessica J., Zou, Fei, Huang, Hanwen, Moy, Sheryl S., et al., Genetics


ABSTRACT

Behaviors are often highly heritable, polygenic traits. To investigate molecular mediators of behavior, we analyzed gene expression patterns across seven brain regions (amygdala, basal ganglia, cerebellum, frontal cortex,hippocampus, cingulate cortex, and olfactory bulb) of 10 different inbred mouse strains (129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BTBR T^sup +^ tf/J, C3H/HeJ, C57BL/6J, C57L/J, DBA/2J, and FVB/NJ). Extensive variation was observed across both strain and brain region. These data provide potential transcriptional intermediates linking polygenic variation to differences in behavior. For example, mice from different strains had variable performance on the rotarod task, which correlated with the expression of >2000 transcripts in the cerebellum. Correlation with this task was also found in the amygdala and hippocampus, but not in other regions examined, indicating the potential complexity of motor coordination. Thus we can begin to identify expression profiles contributing to behavioral phenotypes through variation in gene expression.

INVESTIGATIONS into the genetics of behavioral traits, from alcohol preference to depression to cognitive ability, have revealed that behavior is highly heritable and likely influenced by many genes (WINTERER and GOLDMAN 2003; OROSZI and GOLDMAN 2004; HAMET and TREMBLAY 2005). This genetic complexity has led to difficulty in identifying genes involved in psychiatric disorders as well as those contributing to general behavioral characteristics. To understand better how genotype influences behavioral phenotype, we performed a detailed analysis of expression profiles throughout the brain to determine which transcripts vary by genetic background and correlate with behavior. Recent catalogs of the mouse transcriptome indicate that there may be <30,000 protein-coding genes, but that alternate splicing, alternative start and stop sites, and microRNAs can add substantially to genetic complexity (CARNINCI et al. 2005). This makes the dissection of gene expression, an intermediate between polymorphic DNA sequence and variable phenotype, a logical choice to investigate relationships connecting genotype to complex phenotypes like behavior.

Previous studies have examined gene expression profiles in the brain by microarray analysis. ZAPALA et al. (2005) have shown that regional differences in gene expression in the adult brain are largely reflective of the developmental origin of a particular region. Investigations into strain-related differences have led to estimates that 1-2% of the genes may vary in expression between six brain regions of C57BL/6 and 129SvEv mice (SANDBERG et al. 2000; PAVLIDIS and NOBLE 2001).

To extend previous studies and gain a more accurate picture of transcriptional variation, we measured gene expression in seven different regions of the mouse brain: amygdala, basal ganglia, cerebellum, frontal cortex, hippocampus, cingulate cortex, and olfactory bulb. These regions all play roles in behavior, and they encompass a range of neurocognitive functions, including locomotion, emotion, sensation, learning, and memory. Furthermore, the gene expression profile from each region was examined in 10 different inbred mouse strains: 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BTBR T^sup +^ tf/J, C3H/HeJ, C57BL/6J, C57L/J, DBA/2J, and FVB/NJ. Taking advantage of the diversity of both brain region and strain, we found that 57% of all transcripts assayed show variation across region and/or genetic background, a marked increase over previous reports (SANDBERG et al. 2000; PAVLIDIS and NOBLE 2001; ZAPALA et al. 2005). This diversity is due to the inclusion of more distantly related strains and is a tool to focus on the molecular causes for the phenotypic diversity observed among these strains.

Performance on the accelerating rotarod is a common motor coordination task, utilized with genetically and pharmacologically modified mouse models. Comparison of this strain-specific phenotype to gene expression serves as a clear proof of principle for our approach relating expression to strain-specific phenotypes. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

Large-Scale Gene Expression Differences across Brain Regions and Inbred Strains Correlate with a Behavioral Phenotype
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
  • Highlights & Notes
  • Citations
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.