Anterior Temporal Cortex and Semantic Memory: Reconciling Findings from Neuropsychology and Functional Imaging

By Rogers, Timothy T.; Hocking, Julia et al. | Cognitive, Affective and Behavioral Neuroscience, September 2006 | Go to article overview

Anterior Temporal Cortex and Semantic Memory: Reconciling Findings from Neuropsychology and Functional Imaging


Rogers, Timothy T., Hocking, Julia, Noppeney, Uta, Mechelli, Andrea, et al., Cognitive, Affective and Behavioral Neuroscience


Studies of semantic impairment arising from brain disease suggest that the anterior temporal lobes are critical for semantic abilities in humans; yet activation of these regions is rarely reported in functional imaging studies of healthy controls performing semantic tasks. Here, we combined neuropsychological and PET functional imaging data to show that when healthy subjects identify concepts at a specific level, the regions activated correspond to the site of maximal atrophy in patients with relatively pure semantic impairment. The stimuli were color photographs of common animals or vehicles, and the task was category verification at specific (e.g., robin), intermediate (e.g., bird), or general (e.g., animal) levels. Specific, relative to general, categorization activated the antero-lateral temporal cortices bilaterally, despite matching of these experimental conditions for difficulty. Critically, in patients with atrophy in precisely these areas, the most pronounced deficit was in the retrieval of specific semantic information.

Studies of patients with semantic impairment suggest that the most anterior portions of the temporal cortices critically support human conceptual knowledge. The purest documented semantic syndrome, semantic dementia (SD; Hodges, Patterson, Oxbury, & Funnell, 1992; Snowden, Goulding, & Neary, 1989), arises from progressive deterioration of the anterior temporal cortex, frequently more pronounced in the left hemisphere, but always involving both (Davies, Graham, Xuereb, Williams, & Hodges, 2004; Mummery et al., 2000). Patients with SD are impaired on any task requiring knowledge about the meanings of words and objects, including picture naming, word-picture matching, category and property verification (Rogers et al., 2004; Rogers, Watling, Hodges, & Patterson, 2005; Snowden et al., 1989;Warrington, 1975), matching pictures or words on the basis of thematic associations (Hodges, Graham, & Patterson, 1995), sorting words or pictures (Hodges et al., 1992; Rogers etal., 2004), drawing-to-name and delayed copying of drawings of familiar objects (Bozeat et al., 2003; Rogers et al., 2004), sound-picture matching (Bozeat, Lambon Ralph, Patterson, Garrard, & Hodges, 2000), demonstrating the correct use of objects (Hodges, Bozeat, Lambon Ralph, Patterson, & Spatt, 2000), object reality decision (Rogers, Lambon Ralph, Hodges, & Patterson, 2003), and so on (see Patterson & Hodges, 2000). These deficits are typically observed for all semantic categories (Garrard, Lambon Ralph, & Hodges, 2002) and are apparent in all modalities of testing but are specific to semantic knowledge; other cognitive faculties are reasonably well preserved in the disorder (Hodges, Garrard, & Patterson, 1998). The striking consistency of both the cognitive and the neural abnormalities in SD strongly suggests that the bilateral anterior temporal cortices are critical for amodal and domain-general aspects of semantic processing (Rogers et al., 2004); that is, they contribute to semantic processing for all kinds of concepts and for all modalities of reception and expression. In line with this view, other brain diseases that can affect the anterior temporal lobes (ATLs), such as Alzheimer's disease and herpes simplex viral encephalitis, also often disrupt semantic memory, although never as selectively as in SD (Hodges & Patterson, 1995).

Functional neuroimaging has offered a rather startlingly different picture of the neural representation of semantic knowledge, in three respects. First, the majority of research has yielded left-sided, rather than bilateral, cortical activations for semantic tasks (Devlin et al., 2002; Joseph, 2001; Martin & Chao, 2001; Thompson-Schill, 2003). second, functional imaging results have indicated that semantic knowledge is encoded in a widely distributed cortical network, with different regions specialized to represent particular kinds of information (Martin & Chao, 2001; Tranel, Damasio, & Damasio, 1997), particular categories of object (Caramazza & Mahon, 2003; Perani et al. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Anterior Temporal Cortex and Semantic Memory: Reconciling Findings from Neuropsychology and Functional Imaging
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.