An Electronic Marketplace Based on Reputation and Learning

By Roozmand, Omid; Nematbakhsh, Mohammad Ali et al. | Journal of Theoretical and Applied Electronic Commerce Research, April 2007 | Go to article overview

An Electronic Marketplace Based on Reputation and Learning


Roozmand, Omid, Nematbakhsh, Mohammad Ali, Baraani, Ahmad, Journal of Theoretical and Applied Electronic Commerce Research


Abstract

In this paper, we propose a market model which is based on reputation and reinforcement learning algorithms for buying and selling agents. Three important factors: quality, price and delivery-time are considered in the model. We take into account the fact that buying agents can have different priorities on quality, price and delivery-time of their goods and selling agents adjust their bids according to buying agents preferences. Also we have assumed that multiple selling agents may offer the same goods with different qualities, prices and delivery-times. In our model, selling agents learn to maximize their expected profits by using reinforcement learning to adjust product quality, price and delivery-time. Also each selling agent models the reputation of buying agents based on their profits for that seller and uses this reputation to consider discount for reputable buying agents. Buying agents learn to model the reputation of selling agents based on different features of goods: reputation on quality, reputation on price and reputation on delivery-time to avoid interaction with disreputable selling agents. The model has been implemented with Aglet and tested in a large-sized marketplace. The results show that selling/buying agents that model the reputation of buying/selling agents obtain more satisfaction rather than selling/buying agents who only use the reinforcement learning.

Key words: Reputation, Reinforcement Learning, Electronic Commerce Agents

(ProQuest-CSA LLC: ... denotes formulae omitted.)

1 Introduction

With the advent of mobile and intelligent agent technology, e-commerce has been entered in a new era of its life [28]. Also agent architecture provides a flexible environment to model the other fields of research [8], [12], [20]. Agent- Based e-Marketplace is one of the most important results of using agent technology over e-Commerce. Electronic marketplace provides a single location for many buyers and sellers to congregate electronically and complete their own transactions. In the recent years, the extensive research is focused on designing agent-based e-Marketplaces [2], [6], [14], [15], [19]. Moreover, there are some research on personal intelligent agents for e-commerce applications [5], [7], [8], [10], [29]. But the most important problem that can be mentioned in these works is poor intelligence of trading agents.

In addition, reinforcement learning [17] has been studied for various multi-agent problems [4], [16], [21], [22]. However, these efforts are not directly modeled as economic agents and market environments. There are some research on reputation and trust modeling which do not use reinforcement learning [3], [9], [11], [18], [30]. A number of agent models for electronic market environments have been proposed. Jango [10] is a shopping agent that assists customers in getting product information. Given a specific product by a customer, Jango simultaneously queries multiple online merchants (from a list maintained by NetBot, Inc.) for the product availability, price, and important product features. Jango then displays the query results to the customer. Although Jango provides customers with useful information for merchant comparison, at least three shortcomings may be identified: (i) The task of analyzing the resultant information and selecting appropriate merchants is completely left for customers, (ii) The algorithm underlying its operation does not consider product quality which is of great importance for the merchant selection task, (iii) Jango is not equipped with any learning capability to help customers choose more and more appropriate merchants. Another interesting agent model is Kasbah [5], designed by the MIT Media Lab. Kasbah is a multi-agent electronic marketplace where selling and buying agents can negotiate with one another to find the "best possible deal" for their users. The main advantage of Kasbah is that its agents are autonomous in making decisions, thus freeing users from having to find and negotiate with buyers and sellers. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

An Electronic Marketplace Based on Reputation and Learning
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.