Impact of Transgene Inheritance on the Mitigation of Gene Flow between Crops and Their Wild Relatives: The Example of Foxtail Millet

By Shi, Yunsu; Wang, TianYu et al. | Genetics, October 2008 | Go to article overview

Impact of Transgene Inheritance on the Mitigation of Gene Flow between Crops and Their Wild Relatives: The Example of Foxtail Millet


Shi, Yunsu, Wang, TianYu, Li, Yu, Darmency, Henri, Genetics


ABSTRACT

Developing genetically modified crop plants that are biologically contained could reduce significantly the potential spread of transgenes to conventional and organic crop plants and to wild or weedy relatives. Among several strategies, the hereditary mode of transmission of transgenes, whether dominant, recessive, or maternal, could play a major role in interspecific gene flow. Here we report on the gene flow between foxtail millet (Setaria italica), an autogamous crop, and its weedy relative, S. viridis, growing within or beside fields containing the three kinds of inherited herbicide resistance. Over the 6-year study, in the absence of herbicide selection, the maternal chloroplast-inherited resistance was observed at a 2 × 10^sup -6^ frequency in the weed populations. Resistant weed plants were observed 60 times as often, at 1.2 × 10^sup -4^ in the case of the nuclear recessive resistance, and 190 times as often, at 3.9 × 10^sup -4^ in the case of the dominant resistance. Because the recessive gene was not expressed in the first-generation hybrids, it should be more effective than dominant genes in reducing gene flow under normal agricultural conditions where herbicides are sprayed because interspecific hybrids cannot gain from beneficial genes.

GENETICALLY modified (GM) crops could generate potential benefits in many areas of agricultural performance, including best uses of agrochemicals and simplified farmmanagement, and they may broaden the offer of plant services, including soil detoxification and production of medicinal substances. However, many areas of scientific uncertainty and public concern remain regarding environmental and health hazards. In particular, the question of the (trans)gene flow to wild relatives of GM crops is a hot topic, and the debate is open in Europe about the coexistence of GM and non-GM crops. Spontaneous gene flow from crops in the fields to their wild relatives has been documented for most important crops (Ellstrand 2003).Designing strategies to prevent (trans)genes from moving into genomes of related species therefore should be of the highest priority.

In addition to agronomical management, technologies for the prevention of transgene flow to nontransgenic plants may significantly reduce concern about its impacts on biodiversity and non-GM crops. They include biotechnology-based switch mechanisms, also called genetic use restriction technologies (Hills et al. 2007); transgenic mitigation using a tandem construct where a gene of choice is linked to a gene that is deleterious for a wild recipient plant but neutral for the crop (Al-Ahmad et al. 2005); and transgene incorporation into the plant chloroplast because cultivated species generally inherit plastids from the mother and chloroplast genes are not carried by pollen (Daniell 2002). Although tested in the laboratory, those technologies remain pure theory and there is still little knowledge of their ecological and agronomic effects.

Other genetic strategies, such as multigenic determinism and recessive expression, are advocated. In particular, nuclear recessive genes are not expressed by heterozygous plants, so there is no risk of the presence of the transgene product in the case of a non-GM field pollinated by adjacent GM fields. In addition, they are not expressed in interspecific hybrids between crops and their wild relatives, so that even a beneficial transgene cannot help hybrids to be selected, whatever the habitat. As interspecific hybrids often suffer some lower fitness due to incompatible gene combinations or an unbalanced hybridization process between distantly related species (Ellstrand 2003; Van Tienderen 2004), this can help reduce the spread of the transgenes. However, homozygous recessive plants occur in hybrid progeny, and these plants could be submitted to favorable selection.

In this article, we aimed at comparing over the course of 6 years the efficiency of this strategy with regard to the present situation of a simple nuclear dominant gene and that of the maternal transgene transmission. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Impact of Transgene Inheritance on the Mitigation of Gene Flow between Crops and Their Wild Relatives: The Example of Foxtail Millet
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.