Decision Theory, Reinforcement Learning, and the Brain

By Dayan, Peter; Daw, Nathaniel D. | Cognitive, Affective and Behavioral Neuroscience, December 2008 | Go to article overview

Decision Theory, Reinforcement Learning, and the Brain


Dayan, Peter, Daw, Nathaniel D., Cognitive, Affective and Behavioral Neuroscience


Decision making is a core competence for animals and humans acting and surviving in environments they only partially comprehend, gaining rewards and punishments for their troubles. Decision-theoretic concepts permeate experiments and computational models in ethology, psychology, and neuroscience. Here, we review a well-known, coherent Bayesian approach to decision making, showing how it unifies issues in Markovian decision problems, signal detection psychophysics, sequential sampling, and optimal exploration and discuss paradigmatic psychological and neural examples of each problem. We discuss computational issues concerning what subjects know about their task and how ambitious they are in seeking optimal solutions; we address algorithmic topics concerning model-based and model-free methods for making choices; and we highlight key aspects of the neural implementation of decision making.

(ProQuest: ... denotes formulae omitted.)

The abilities of animals to make predictions about the affective nature of their environments and to exert control in order to maximize rewards and minimize threats to homeostasis are critical to their longevity. Decision theory is a formal framework that allows us to describe and pose quantitative questions about optimal and approximately optimal behavior in such environments (e.g., Bellman, 1957; Berger, 1985; Berry & Fristedt, 1985; Bertsekas, 2007; Bertsekas & Tsitsiklis, 1996; Gittins, 1989; Glimcher, 2004; Gold & Shadlen, 2002, 2007; Green & Swets, 1966; Körding, 2007; Mangel & Clark, 1989; McNamara & Houston, 1980; Montague, 2006; Puterman, 2005; Sutton & Barto, 1998; Wald, 1947; Yuille & Bülthoff, 1996) and is, therefore, a critical tool for modeling, understanding, and predicting psychological data and their neural underpinnings.

Figure 1 illustrates three paradigmatic tasks that have been used to probe this competence. Figure 1A shows a case of prediction learning (Seymour et al., 2004). Here, human volunteers are wired up to a device that delivers variable strength electric shocks. The delivery of the shocks is preceded by visual cues (Cue A through Cue D) in a sequence. Cue A occurs on 50% of the trials; it is followed by Cue B and then a larger shock 80% of the time or by Cue D and then a smaller shock 20% of the time. The converse is true for Cue C. Subjects can, therefore, in general expect a large shock when they get Cue A, but this expectation can occasionally be reversed. How can they learn to predict their future shocks? An answer to this question is provided in the Markov Decision Problem section; as described there, these functions are thought to involve the striatum and various neuromodulators. Such predictions can be useful for guiding decisions that can have deferred consequences; formally, this situation can be characterized as a Markov decision problem (MDP) as studied in the fields of dynamic programming (Bellman, 1957) and reinforcement learning (Sutton & Barto, 1998).

Figure 1B depicts a decision task that is closely related to signal detection theory (Green & Swets, 1966) and has been particularly illuminating about the link between neural activity and perception (Britten, Newsome, Shadlen, Celebrini, & Movshon, 1996; Britten, Shadlen, Newsome, & Movshon, 1992; Gold & Shadlen, 2001, 2002, 2007; Shadlen, Britten, Newsome, & Movshon, 1996; Shadlen & Newsome, 1996). In the classical version of this task, monkeys watch a screen that shows moving dots. A proportion of the dots is moving in one direction; the rest are moving in random directions. The monkeys have to report the coherent direction by making a suitable eye movement. By varying the fraction of the dots that moves coherently (called the coherence), the task can be made easier or harder. The visual system of the monkey reports evidence about the direction of motion; how should the subject use this information to make a decision? …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

Decision Theory, Reinforcement Learning, and the Brain
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Author Advanced search

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.