DLA-Based Strategies for Cloning Insertion Mutants: Cloning the Gl4 Locus of Maize Using Mu Transposon Tagged Alleles

By Liu, Sanzhen; Dietrich, Charles R. et al. | Genetics, December 2009 | Go to article overview

DLA-Based Strategies for Cloning Insertion Mutants: Cloning the Gl4 Locus of Maize Using Mu Transposon Tagged Alleles


Liu, Sanzhen, Dietrich, Charles R., Schnable, Patrick S., Genetics


ABSTRACT

Digestion-ligation-amplification (DLA), a novel adaptor-mediated PCR-based method that uses a single-stranded oligo as the adaptor, was developed to overcome difficulties of amplifying unknown sequences flanking known DNA sequences in large genomes. DLA specifically overcomes the problems associated with existing methods for amplifying genomic sequences flanking Mu transposons, including high levels of nonspecific amplification. Two DLA-based strategies, MuClone and DLA-454, were developed to isolate Mu-tagged alleles. MuClone allows for the amplification of subsets of the numerous Mu transposons in the genome, using unique three-nucleotide tags at the 3' ends of primers, simplifying the identification of flanking sequences that cosegregate with mutant phenotypes caused by Mu insertions. DLA-454, which combines DLA with 454 pyrosequencing, permits the efficient cloning of genes for which multiple independent insertion alleles are available without the need to develop segregating populations. The utility of each approach was validated by independently cloning the gl4 (glossy4) gene. Mutants of gl4 lack the normal accumulation of epicuticular waxes. The gl4 gene is a homolog of the Arabidopsis CUT1 gene, which encodes a condensing enzyme involved in the synthesis of very-long-chain fatty acids, which are precursors of epicuticular waxes.

INSERTIONAL mutagenesis is widely used in functional genomics. For example, insertion mutants obtained via T-DNA in Arabidopsis (Alonso et al. 2003) and rice (Sallaud et al. 2004) and via transposons in maize (Brutnell 2002; Brutnell and Conrad 2003; May et al. 2003; McCarty et al. 2005; Settles et al. 2007), rice (Kolesnik et al. 2004; Miyao et al. 2003; Kumar et al. 2005), and Arabidopsis (Speulman et al. 1999) have been used for both forward and reverse genetics. In both situations it is necessary to identify sequences flanking the insertional mutagen. For example, the availability of sequence-indexed collections of TDNA insertion mutants (Alonso et al. 2003) has greatly facilitated the functional analysis of Arabidopsis. Such reverse genetic resources are generated by creating large numbers of independent insertion events and then identifying and sequencing the DNA flanking the insertional mutagen. To be cost effective such flanking sequences are typically amplified using one of several available "genome-walking" strategies (Shyamala and Ames 1989; Alonso et al. 2003; O'Malley et al. 2007; Vandenbussche et al. 2008; Uren et al. 2009).

Similarly, once mutant phenotypes have been identified following forward genetic screens, the challenge in cloning the affected gene is to identify the specific genic sequences that flank causative insertions. Insertional mutagensis is typically more productive if multiple copies of the insertional mutagens are present. The Mutator (Mu) transposon of maize has been widely used for forward genetics because of its high copy number and transposition activity (Benito and Walbot 1997). This high copy number can, however, complicate the identification of the specific insertion responsible for a mutant phenotype. Traditionally, identifying a gene sequence that had been tagged by an insertion involved genomic DNA blotting using multiple wild-type and mutant siblings to identify a DNA fragment that contained the insertion and that cosegregated with the mutant phenotype (James et al. 1995). However, bothDNA blotting and subsequent postblotting gene isolation steps were laborious, time-consuming, and often unpredictable.

Here, we report two strategies, MuClone and DLA- 454, for cloning mutant alleles derived from insertional mutagenesis. Both strategies are based on an adaptation of a novel highly specific and efficient genome-walking method, digestion-ligation-amplification (DLA) that uses a single-stranded oligo as the adaptor instead of the partially double-stranded adaptors used in other methods. MuClone, a cost-efficient strategy, adds unique three-nucleotide tags to the 3' ends of the common adaptor primer so subsets of high-copy Mu transposons can be separately amplified in a manner analogous to AFLP technology (Yunis et al. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

DLA-Based Strategies for Cloning Insertion Mutants: Cloning the Gl4 Locus of Maize Using Mu Transposon Tagged Alleles
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
  • Highlights & Notes
  • Citations
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.