Facilitating Innovation in Science Education through Assessment Reform

By Hanauer, David I.; Bauerle, Cynthia | Liberal Education, Summer 2012 | Go to article overview

Facilitating Innovation in Science Education through Assessment Reform


Hanauer, David I., Bauerle, Cynthia, Liberal Education


FOR OVER TWO DECADES, two pervasive themes have informed the discourse on undergraduate science education in the United States. The first emphasizes the role of the nation's science and technology enterprise in meeting critical economic and societal challenges in the twenty-first century. Science is better positioned than ever before to address important societal issues such as food security, environmental health, and sustainable energy (National Research Council 2009). However, realizing this potential to address pressing societal problems requires attracting and retaining new generations of creative and versatile scientists who are well prepared to participate in fast-paced, information-rich, collaborative forms of science that are increasingly pursued on the cusps between disciplines. The foundation of the "sci-tech" enterprise is its welltrained workforce, which is sustained by tapping the broad and diverse talent pool of students who are interested in science (National Research Council 2011). Addressing twenty-first-century challenges also requires a citizenry that is equipped to understand the science that informs controversial issues - such as climate change and alternative energy development - that directly affect their lives and communities.

The role of science education in this regard is clear, yet seemingly contradicted by the second pervasive theme: undergraduate science education in the United States is not as effective as it needs to be in translating student interest in science into optimal preparation either to enter the science workforce or to participate as literate citizens in an increasingly global society. Given the potential for science to address important problems, undergraduate programs ought to be functioning as busy portals for engaging students' innate fascination and developing their understanding of the nature and practice of science. Instead, recent studies suggest, the opposite is true: over half of the students who enter college with an interest in science do not persist in their training beyond the first year or two of introductory coursework (National Research Council 2011). Further, while underrepresented minority (URM) students aspire to major in science at rates similar those of white and Asian students, their completion rates are even lower than their non-URM counterparts. Students who transfer out of science programs report reasons ranging from lack of preparation to perceptions that science courses are unengaging, impersonal, or irrelevant to their interests (Aronson 2002; Felder, Felder, and Dietz 1998; Sevo 2009). Whatever the reason, the implications are clear: negative experiences in undergraduate science courses may have the effect of either eroding student motivation or turning students away from science altogether.

In recent years, multiple efforts within the academic, federal, and private sectors have focused attention on the state of undergraduate science education with respect to success in developing science literacy and preparing students to pursue advanced careers in science fields. The need to engage the "minds and talents" of all Americans in order to improve science literacy and to support scientific research and innovation in the twenty-first century is well documented (AAAS 201 1 ). Most recently, the President's Council of Advisors on Science and Technology (PCAST) concluded that, in order to meet US science workforce needs, one million additional STEM-capable graduates will be needed in the next decade (PCAST 2012).

The question remains how to improve science education in order to increase student persistence and success. An emerging convergence of purpose and strategy among concerned scientists and educators is evident in several published reports. A decade ago, the landmark Bio20W report called for more active learning approaches, greater emphasis on quantitative skills, and improved connections among biology, chemistry, and physics (National Research Council 2003). …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

Facilitating Innovation in Science Education through Assessment Reform
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
  • Highlights & Notes
  • Citations
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.