A Method for the Evaluation and Selection of an Appropriate Fuzzy Implication by Using Statistical Data

By Botzoris, G. N.; Papadopoulos, K. et al. | Fuzzy Economic Review, November 2015 | Go to article overview

A Method for the Evaluation and Selection of an Appropriate Fuzzy Implication by Using Statistical Data


Botzoris, G. N., Papadopoulos, K., Papadopoulos, B. K., Fuzzy Economic Review


JEL Classification: C02, C60, C61

1.INTRODUCTION

We know that the implication in classic logic depends only on whether the premise is true or false. That is, whether the syllogism (reasoning) is true or false depends solely on if the premise and the conclusion is true or false.

Every proposition in classic logic has two values 0 or 1, true or false, holds or does not hold. Let us assume that we have two such propositions p and q. We symbolize the conjunction (AND) of the propositions with λ and the disjunction (OR) with v, while -p is used to symbolize the negation of p (i.e. NOT-p).

The conjunction pAq is true, if and only if both propositions p and q are true. In such a case, it holds that pAq = min {p, q}, (Table 1). Indeed, let p be the proposition "The number 2 is prime" (true) and q the proposition "The number 6 is a multiple of 2" (true). Then, the conjunction pAq: "The number 2 is a prime (true) and the number 6 is a multiple of 2 (true)" has truth value equal to 1.

The disjunction pvq is true, if one of the two propositions is true, that is if it holds that pvq = max {p, q}, (Table 1). Indeed, let p be the proposition "The number 3 is an integer" (true) and q the proposition "The number 16 is a multiple of 5" (false). Then, the disjunction pvq "The number 3 is an integer (true) and the number 16 is a multiple of 5 (false)" has truth value equal to 1.

Let us consider the proposition p "The population of Spain is less than that of China" which is true. The negation of proposition p, i.e. the proposition -p "The population of Spain is greater than or equal to that of China" is false.

For determining the truth value of an implication, (denoted as ^) between two propositions p and q (we assume the implication p^q, i.e. the proposition p implies the proposition q), it would be enough to determine the truth value of the conjunction -pvq (Table 2).

From the last column of Table 2, it is obvious that the implication p^q is always true, except in the case where the proposition p is true and the proposition q is false, i.e. the case where from a false premise, we arrive at a false conclusion.

From Table 2, we also see that whenever we start from a false premise (p=0), the reasoning, i.e. the implication, is true regardless of the conclusion that we arrive at (q=0 or q=1). Finally, another characteristic feature of the classical logic is that the property of symmetry does not hold i.e. the truth value of the implication p^q generally has a different value from the truth value of the implication q^p. Indeed, from Table 2, we can observe that the implication 1 ^0 has truth value of 0, while the symmetric equivalent implication 0^1, has a truth value of 1, [1], [2].

2.THE FUZZY IMPLICATION

The fuzzy implication assigns a truth value J(x,y) to the fuzzy proposition "If p then q"for every truth value x, y of the fuzzy propositions p, q. It is a function of the form J : [0,1]x [0,1] ^[0,1] which satisfies the following nine conditions, every one of which does not contain symmetry [3], [4], [5], [6]:

1. Vx,y,z e [0,1], x < z ^ J(x,y) > J(z,y),

2. Vx,y,z e [0,1], y < z ^ J(x,y) < J(x,z),

3. Vy e [0,1], J(0,y) = 1,

4. Vz e [0,1], J(1, z) = 1,

5. Vx e [0,1], J(x,x)=1,

6. Vx, y, z e[0,1], J(x,J(y,z))=J(y,J(x,z)),

7. Vx,y e [0,1], J(x,y) = 1 when x < y,

8. Vx,y e [0,1], J(x,y) = J(c(y),c(x)), for a fuzzy complement c,

9. J is a continuous function.

In many applications, e.g. in the fuzzy inference system of MATLAB (such an application can be found in [7]), the classic forms of implication, min (Mamdani) [8] and the prod (Larsen) [9] are used as first choices, where: These implications are symmetric, since x^y = y^x, and they are called engineering implications. These implications are widely used in the field of engineering, where the cause and effect are often intertwined, hence the symmetry is acceptable. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

A Method for the Evaluation and Selection of an Appropriate Fuzzy Implication by Using Statistical Data
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
  • Highlights & Notes
  • Citations
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.