Electromagnetic Applications of Biomimetic Research

By Stone, Morley O.; Naik, Rajesh R. et al. | Air & Space Power Journal, Spring 2004 | Go to article overview

Electromagnetic Applications of Biomimetic Research


Stone, Morley O., Naik, Rajesh R., Brott, Lawrence L., Meltzer, Peter S., Jr., Air & Space Power Journal


Editor's Note: PIREP is aviation shorthand for pilot report. It's a means for one pilot to pass on current, potentially useful information to other pilots. In the same fashion, we intend to use this department to let readers know about air and space power items of interest.

FOR THE PAST several years, the Air Force Research Laboratory (AFRL) has been developing sensors capable of detecting electromagnetic radiation across the spectrum-from the infrared (IR), through the visible, and into the ultraviolet regions. These sensors have become integral parts of military weapons systems as well as intelligence, surveillance, and reconnaissance systems-and, undoubtedly, the capabilities we have developed are technologically sophisticated. However, many biological systems possess sensing capabilities unmatched by current technologies. For example, the IR-sensitive beetle (Melanophila acuminata) is attracted to fires and smoke 50 kilometers away.1 These insects are attracted to forest fires because burned trees provide the ideal environment for larvae to develop and hatch into adults. The forest fires emit IR radiation that the beetle detects via a specialized IR sensor known as the IR pit organ or IR sensilla. By understanding the mechanism and the biological processes involved in this IR sensor, one could develop new and improved materials and sensors for Air Force applications.

Literally, the term biomimetics means to imitate life. In a more practical sense, biomimetics is an interdisciplinary effort aimed at understanding biological principles and then applying them to improve existing technology. This process can mean changing a design to match a biological pattern or actually using biological materials, such as proteins, to improve performance.2

Biomimetics, which had its earliest and strongest footholds in materials science, is rapidly spreading to the arenas of electromagnetic sensors and computer science. This article addresses electromagnetic radiation on either side of the visible, ultraviolet, and IR regions, providing a general overview of recent advancements in biomimetics research as it relates to the Air Force and national defense.

When examining the landscape of biomimetics, one finds the application obvious in a number of areas, many of which are defense related. The study of fish swimming, for example, has obvious tie-ins to underwater locomotion and naval interests, and much of the work in structural biomimetics (how biology builds structures) is of interest to the Army due to the potential for producing next-generation, lightweight armor based on naturally occurring biological composite materials.3 From a commercial standpoint, few biomimetic results have proved as exciting as the recent successes in biologically derived silica and silica polymerization.4 After all, a significant portion of the economy-especially the technology sector-is based on manipulating silicon. It is easy to understand why the ability to manipulate this element under benign, ambient conditions using biomolecules has many people excited.

Sensing electromagnetic radiation is of particular interest in aviation because of the increasing distances over which sensors need to operate. The ability to detect such radiation in the IR without cryogenics-the science of low-temperature phenomena-has been an important technology driver because of increased sensor reliability and reduced payloads. The latter are becoming even more important as space migration dominates defense and commercial interests. Against this backdrop, it is easy to see why several funding agencies have expanded the area of research in biomimetics-in particular, biomimetic electromagnetic sensing. In short, biomimetics should allow for smaller, lighter, less complicated, and easier-to-maintain sensor systems.

The Materials and Manufacturing Directorate's Critical Research Role

Scientists at the AFRL's Materials and Manufacturing Directorate (ML) at Wright-Patterson AFB, Ohio, working with the Air Force Office of Scientific Research near Washington, DC, and prominent research scientists at universities, have made significant strides in biomimetic research. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited article

Electromagnetic Applications of Biomimetic Research
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this article
  • Highlights & Notes
  • Citations
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.