The Representation of FPA-Solutions as Pseudoline-Arrangements Mathematical Basis of the Feature Pattern Analysis (FPA)-Part I

By Brehm, Michelle | Psychologische Beiträge, January 1, 2001 | Go to article overview

The Representation of FPA-Solutions as Pseudoline-Arrangements Mathematical Basis of the Feature Pattern Analysis (FPA)-Part I


Brehm, Michelle, Psychologische Beiträge


Summary

In this chapter the mathematical foundations of the Feature Pattern Analysis (FPA) introduced by Feger (1988) are presented, in particular for the two-dimensional case.

The FPA is a method to investigate and describe the structure of co-occurrence data by analyzing the contingencies of the minimal order which still contain the essential information of the data.

A new mathematically supported approach proposed in this paper permits to analyse structures in a given set of observed data in several logically equivalent and coherent alternative forms of representation. In particular it coordinates the three different approaches of representation:

1. Geometrical configurations (pseudoline-arrangements)

2. Sets of third order contingencies

3. Sets of prediction rules (zero cells).

The main effort of this paper is to ensure the mathematical conditions of existence, uniqueness, and construction of the geometrical representation of a given data set of vectors of dichotomous items in form of pseudoline-arrangements representing FPA-solutions as proposed by Feger and discussed in a previous chapter of this volume.

The relations between the geometric representations as pseudoline-arrangements or as planar Hassediagram and the combinatorial representation of a set of patterns or of the set of third order contingencies derived from the data set are investigated.

It is shown that FPA-solutions as mathematical objects can be regarded as oriented matroids with additional properties. The FPA approach yields a meaningful interpretation compatible with the Representation and the uniqueness problem of Measurement Theory ( see Suppes et al 1989, Wille 1996).

After introducing the type of data under consideration, their third order contingencies and an intuitive description of the three possible types of FPA-models, the mathematical notion of simple signed pseudohyperplane-arrangements is introduced as a mathematically appropriate object to represent FPA-solutions geometrically. The necessity of introducing pseudohyperplane-arrangements for modelling FPA-solution instead of Feger's first attempt to consider geometric arrangements restricted to the use of straight lines (for minimal representation dimension k = 2), respectively (k-1) dimensional planes (for minimal representation k > 2) is discussed.

We show in section 5 how a two-dimensional Type I or Type II FPA-solution can be mathematically represented by a planar Hasse-diagram, which appears to be an appropriate tool to analyse and to construct FPA- solutions.

In section 4 it is proved that the pseudoline-arrangement representing the FPA is uniquely determined by its associated third order contingencies. Here the role of the "zero cell condition" introduced by Feger obtains its full mathematical and psychological meaning.

The description of FPA-solutions by a Hasse-diagram as a dual representation of a pseudolinearrangement viewed as a planar graph opens a new psychological dimension of the data, because in the dual image of the pseudoline-arrangement the relation between data ordered and aligned in level sets becomes more transparent as well as providing technical tools for the mathematical proofs.

Key words: mathematical foundation of Feature Pattern Analysis, Hasse-Diagram, structure of cooccurrence data, pseudoline-arrangements

1. Description of the data and notations IMAGE FORMULA8

2. The general FPA-model

An FPA-solution is a geometric representation of the set of observed patterns F (vectors of attributes) in terms of regions, called cells, in a space of minimal dimension k. These regions are separated by pseudohyperplanes, dividing the space in two half spaces coresponding to the opposite categories of a single item of the pattern.

A formal definition of oriented pseudohyperplane-arrangements in general can be found in the mathematical literature on oriented matroids. …

The rest of this article is only available to active members of Questia

Already a member? Log in now.

Notes for this article

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items

Items saved from this article

This article has been saved
Highlights (0)
Some of your highlights are legacy items.

Highlights saved before July 30, 2012 will not be displayed on their respective source pages.

You can easily re-create the highlights by opening the book page or article, selecting the text, and clicking “Highlight.”

Citations (0)
Some of your citations are legacy items.

Any citation created before July 30, 2012 will labeled as a “Cited page.” New citations will be saved as cited passages, pages or articles.

We also added the ability to view new citations from your projects or the book or article where you created them.

Notes (0)
Bookmarks (0)

You have no saved items from this article

Project items include:
  • Saved book/article
  • Highlights
  • Quotes/citations
  • Notes
  • Bookmarks
Notes
Cite this article

Cited article

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Cited article

The Representation of FPA-Solutions as Pseudoline-Arrangements Mathematical Basis of the Feature Pattern Analysis (FPA)-Part I
Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this article

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.