Introduction to Mathematical Philosophy

By Bertrand Russell | Go to book overview

CHAPTER XII
SELECTIONS AND THE MULTIPLICATIVE AXIOM

IN this chapter we have to consider an axiom which can be enunciated, but not proved, in terms of logic, and which is convenient, though not indispensable, in certain portions of mathematics. It is convenient, in the sense that many interesting propositions, which it seems natural to suppose true, cannot be proved without its help; but it is not indispensable, because even without those propositions the subjects in which they occur still exist, though in a somewhat mutilated form.

Before enunciating the multiplicative axiom, we must first explain the theory of selections, and the definition of multiplication when the number of factors may be infinite.

In defining the arithmetical operations, the only correct procedure is to construct an actual class (or relation, in the case of relation-numbers) having the required number of terms. This sometimes demands a certain amount of ingenuity, but it is essential in order to prove the existence of the number defined. Take, as the simplest example, the case of addition. Suppose we are given a cardinal number μ, and a class α which has μ terms. How shall we define μ+μ? For this purpose we must have two classes having μ terms, and they must not overlap. We can construct such classes from α in various ways, of which the following is perhaps the simplest: Form first all the ordered couples whose first term is a class consisting of a single member of α, and whose second term is the null-class; then, secondly, form all the ordered couples whose first term is

-117-

Notes for this page

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this page

Cited page

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited page

Bookmark this page
Introduction to Mathematical Philosophy
Table of contents

Table of contents

Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this book

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this book
  • Bookmarks
  • Highlights & Notes
  • Citations
/ 210

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.