Designing Learning Environments for Developing Understanding of Geometry and Space

By Richard Lehrer; Daniel Chazan | Go to book overview

Preface

Despite a long intellectual history dating back to the origins of civilization, and a recent resurgence as cutting-edge mathematics, geometry and spatial visualization in school are often compressed into a caricature of Greek geometry, generally reserved for the second year of high school. The resulting impoverished view of the mathematics of space rebounds throughout schooling generally to diminish student (and adult) understanding of mathematics.

Among mathematicians and mathematics educators, there is increasing consensus, however, that geometry and spatial visualization deserve a more prominent role in school mathematics. Formalist views of mathematics as a "game" in which abstract symbols are manipulated (views ascendant in the second half of the 19th and the early part of the 20th century) are now challenged by views emphasizing the role of "empirical" methods in mathematics. Contemporary mathematicians studying chaos, fractals, and nonlinear dynamics rely on computer-generated visual representations to perform and display the results of experiments. Moreover, not only do new computer technologies make mathematical experimentation possible and plausible, but these technologies have been widely adopted in a range of cultural practices. At the same time, the mathematics education reform movement accords a central role to mathematical exploration and sense-making and supports the use of technology and visual representations. This shift implies the need to reexamine the nature of the school mathematics curriculum, the goals and aims of teaching, and the design of instruction.

Rather than looking to high-school geometry as the locus (and all too often, the apex) of geometric reasoning, the authors of this volume, many of whom were active in the National Center for Research in Mathematical Sciences Education (NCRMSE), suggest that reasoning about space can and should be successfully integrated with other forms of mathematics, starting at the elementary level and continuing through high school. Reintegrating spatial reasoning into the mathematical mainstream (indeed, placing it at the core of K-12 mathematics environments that promote learning with understanding) will mean increased attention to problems in modeling, structure, and design and reinvigoration of traditional topics like measure, dimension, and form: Geometry education should include contributions to the mathematics of space that were developed after those of the Greeks.

This volume reflects our appreciation of the interactive roles of subject matter, teachers, students, and technologies in designing classrooms that promote understanding of geometry and space. Although these elments of geometry education are mutually constituted, the volume is organized to highlight our vision of a general geometry education, the de

-ix-

Notes for this page

Add a new note
If you are trying to select text to create highlights or citations, remember that you must now click or tap on the first word, and then click or tap on the last word.
One moment ...
Default project is now your active project.
Project items
Notes
Cite this page

Cited page

Style
Citations are available only to our active members.
Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

(Einhorn, 1992, p. 25)

(Einhorn 25)

(Einhorn 25)

1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

Note: primary sources have slightly different requirements for citation. Please see these guidelines for more information.

Cited page

Bookmark this page
Designing Learning Environments for Developing Understanding of Geometry and Space
Table of contents

Table of contents

Settings

Settings

Typeface
Text size Smaller Larger Reset View mode
Search within

Search within this book

Look up

Look up a word

  • Dictionary
  • Thesaurus
Please submit a word or phrase above.
Print this page

Print this page

Why can't I print more than one page at a time?

Help
Full screen
Items saved from this book
  • Bookmarks
  • Highlights & Notes
  • Citations
/ 506

matching results for page

    Questia reader help

    How to highlight and cite specific passages

    1. Click or tap the first word you want to select.
    2. Click or tap the last word you want to select, and you’ll see everything in between get selected.
    3. You’ll then get a menu of options like creating a highlight or a citation from that passage of text.

    OK, got it!

    Cited passage

    Style
    Citations are available only to our active members.
    Buy instant access to cite pages or passages in MLA 8, MLA 7, APA and Chicago citation styles.

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn, 1992, p. 25).

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences." (Einhorn 25)

    "Portraying himself as an honest, ordinary person helped Lincoln identify with his audiences."1

    1. Lois J. Einhorn, Abraham Lincoln, the Orator: Penetrating the Lincoln Legend (Westport, CT: Greenwood Press, 1992), 25, http://www.questia.com/read/27419298.

    Cited passage

    Thanks for trying Questia!

    Please continue trying out our research tools, but please note, full functionality is available only to our active members.

    Your work will be lost once you leave this Web page.

    Buy instant access to save your work.

    Already a member? Log in now.

    Search by... Author
    Show... All Results Primary Sources Peer-reviewed

    Oops!

    An unknown error has occurred. Please click the button below to reload the page. If the problem persists, please try again in a little while.